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Abstract

Modern software and hardware is highly optimized to meet the high
performance demands of users and industry. Depending on user input,
these optimizations leave measurable side effects reflected in the timing,
power consumption, or electromagnetic radiation of the device. Side-
channel attacks leverage the observed side effects to derive inaccessible
processed information. Software-based side-channel attacks leak sensitive
data from operating systems, cryptographic primitives, and real-world
applications solely from software.

Many side-channel attacks run in a local setup, where the attacker has
local code execution on the victim’s system. However, in browsers and
web applications, the attacker either has restricted code execution, e.g.,
sandboxed in JavaScript or only an API to interact with, making it more
difficult to successfully mount attacks. Moreover, it is difficult to design
efficient mitigations for commodity software and hardware.

In this thesis, we investigate remote side-channel attacks and defenses. We
analyze existing software-based side-channel attacks and mount them in
remote settings. Our research leads to the discovery of novel side-channel
attacks in real-world applications such as browsers, databases, and web
server applications. We investigate the precise requirements for an attacker
to mount practical attacks across the internet. We create a remote attack
on a cloud provider’s production system and develop a high-performance
detection and mitigation. Moreover, we develop new techniques to find
side-channel leakage in real-world applications.

The first part of this thesis provides a summary of all contributions
included in the thesis, the necessary background on optimizations in
software and hardware, and software-based side-channel attacks. We
discuss state-of-the-art side-channel attacks and defenses in both software
and hardware. The second part consists of the peer-reviewed papers

1

accepted at renowned international security conferences.

1
The content of the papers is unmodified from the camera-ready versions. The

format of the included papers was modified to fit the layout of this thesis.
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1
Introduction

Software and hardware is highly optimized to fulfill the high performance
demands of users and industry. These optimizations behave differently
depending on user input and leave measurable side effects, reflected in
the timing, power consumption or electromagnetic radiation of the device.
Side-channel attacks derive the processed secret input from the measured
side effects.

Already in 1992, Hu [102] described a cache attack that relies on the timing
differences of accessing cached and uncached data. Kocher [132] discussed
timing attacks on cryptographic algorithms in general by leveraging a hard-
ware side channel, e.g., the cache. The attacks presented by Kocher [132]
exploit timing differences in the RSA modular exponentiation to disclose
private RSA keys. Later, cache attacks became more practical and were
used to detect keystrokes or user interactions [151, 217, 257], break crypto-
graphic primitives [24, 94–96, 107, 108, 144, 183, 185, 191, 246], to attack
secure enclaves [33, 56, 79, 164, 215] and create hidden communication
channels [94, 151, 160, 208, 279, 283]. More recently, with the discov-
ery of Spectre [133] and Meltdown [153], a new research direction called
transient-execution attacks emerged [44, 133, 153]. Meltdown leverages
out-of-order execution and delayed exception handling to disclose sensitive
data, e.g., kernel memory. Spectre [133] exploits speculative execution,
following branch prediction, to disclose arbitrary data. Based on these ini-
tial findings, a wave of novel attacks was discovered in existing processors,
disclosing sensitive data either based on Meltdown-type attacks [40, 44,
153, 199, 211, 212, 218, 248, 267] or Spectre-type attacks [44, 101, 131, 133,
135, 157]. Load Value Injection [249] showed that data can be transiently
injected to mount attacks on secure enclaves. Different approaches were
proposed to mitigate transient-execution attacks, such as new hardware
and software mitigations [86, 111, 130, 281], process isolation [203], secret
masking [46, 161], removing high-resolution timers [51, 52, 170], memory
barriers [111] to stop speculation, and microcode patches [111]. However,
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2 Chapter 1. Introduction

these mitigations introduce large overheads, focus only on a subset of
attacks, or on a subset of scenarios [44, 47, 142, 143].

Besides optimizing the runtime performance, reducing the memory uti-
lization is another challenge for both software and hardware developers.
Memory deduplication is used in modern operating systems to decrease the
memory utilization by detecting physical memory with the same content
and merging duplicates. However, writing content to pages marked as
copy-on-write leads to pagefaults [21, 32], which have a higher execution
time. This timing side channel can be exploited to perform fingerprint-
ing of operating systems and web browsers [84, 148, 184, 238], covert
communication [273, 274], breaking ASLR and KASLR [21, 128], per-
forming Rowhammer attacks in browsers [32, 54] or filesystems [186]. As
an alternative to memory deduplication, memory compression was intro-
duced to reduce the memory utilization in many applications such as web
servers, file systems and operating systems. Kelsey [126] discovered the
first memory-compression attack exploiting when plaintext is compressed
and afterwards encrypted. In cases where both attacker-controlled content
and secret content like browser cookies are compressed, the compression
ratio forms an exploitable side-channel attack. The CRIME attack [206]
was the first to exploit this compression-ratio side channel in web browsers.
Based on their observation, further attacks on memory compression were
discovered [25, 76, 124, 206, 251, 252].

Both optimizations on runtime and memory utilization introduced novel
side channels. However, they were mainly exploited in scenarios with local
code execution and in restricted environments such as browsers [63, 84, 182,
207, 211, 214, 218, 237]. Fully remote attacks have been shown on a small
subset of side channels in a local network setup to attack cryptographic
primitives [15, 120, 209, 295], breaking random-number generators [85],
code diversification [227], transiently leak data [220], break the system’s
integrity [150, 241], or break post-quantum cryptography [264]. Therefore,
for many existing side channels it remains unclear if they are exploitable in
a remote setup. Moreover, to protect against side-channel attacks, different
forms of isolation, such as language-level isolation, process isolation, and
virtualization were introduced. However, it is unclear whether side-channel
attacks can still be mounted within the same security domain or where
user data and resources are still shared, e.g., for database applications.
There is a large potential of undiscovered and practical remote attacks,
which might become a serious threat in the future. In addition, practical
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mitigations against existing side-channel attacks are required that meet
the high performance demands of users and industry.

In this thesis, we analyze the practicality of side-channels attacks and
defenses with a focus on real world applications. We discover novel side-
channel attacks executed in restricted scenarios such as browsers, cloud
environments, and fully remote scenarios where only a web interface is
accessible for the attacker. Figure 1.1 shows all co-authored papers and
their relations. The bold papers represent the papers included in this
thesis. The x-axis shows whether a work was focusing on a novel attack
or defense. In some cases, the papers included both attacks and defenses
and are, therefore, placed in the center. The y-axis shows if the scope of
the attack or defense is a local code-execution scenario or a remote setup,
where the attacker has restricted access. Continuous arrows indicate a
direct influence of one work to another. Dashed arrows indicate an indirect
connection between the works.

In the direction of remote attacks, we examine state-of-the-art software-
based side-channel attacks and mount them in remote scenarios. We
analyze the address-translation attack presented by Gruss et al. [87]
resolving virtual to physical addresses via the identity mapping in the Linux
kernel. However, as we show in this thesis, this attribution was wrong as
speculative execution caused the dereferencing of kernel addresses. For
mitigations against memory-deduplication attacks, it is unclear whether
attacks are possible within the same security domain. We show that,
despite recent mitigations, remote memory-deduplication attacks are still
possible, even across the internet. As attacks on memory compression
mainly exploited the compression ratio, we investigate whether timing
differences in compression algorithms are sufficient to reveal co-located
sensitive data. Hence, we analyze timing leakage in common compression
algorithms assisted by a fuzzer. The fuzzing approach optimizes the
timing latency between correct and incorrect byte guesses to enable remote
byte-by-byte leakage of sensitive data across the internet in server-based
applications. Following a similar principle to automatically finding timing
side channels, we improve the existing techniques to discover keystroke-
related cache activity in shared libraries [90] by introducing a multi-layered
approach. With this novel approach, we show that linker and compiler
optimizations can introduce cache side channels in large software projects.
We discover such a case in a recent version of the Chromium framework,
which is widely used in the Chrome and Chromium browsers and Electron-
based applications like Signal Desktop. In the direction of mitigating
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DefenseAttack

Local

Remote

Rapid Prototyping [63]

KASLR [43]

Spectre PL [174]

LBT [224]
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Figure 1.1.: Overview of all co-authored papers and their relations. Bold papers
represents a paper included in the thesis. The x-axis indicates if a
paper is in an attack or defense direction. The y-axis indicates if
the scope an attack or defense was for a remote or local attacker.
Papers that influenced other papers are connected via continuous
arrows. Dashed arrows indicate an indirect influence of the papers.

side-channel attacks, we analyze existing mitigations against transient-
execution attacks. Based on the insights gained from our own and existing
attacks, we then develop novel mitigation techniques. Our research led to
a novel Spectre mitigation which is integrated in the production system of
Cloudflare Workers. This approach uses hardware-performance counters
to detect Spectre attacks. Based on that detection, our dynamic approach
isolates malicious tenants into separate processes. In contrast to previous
mitigations against Spectre attacks, we verify the feasibility of branchless
programs as a mitigation.
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1.1. Main Contributions

We performed a root-cause analysis of the address-translation attack by
Gruss et al. [87], enabling a translation of virtual to physical addresses,
which was attributed to the x86 prefetch instruction. More specifically,
we showed that this attribution is incorrect and the actual root cause of
the leakage is speculative execution in the Linux kernel. Our analysis
showed that userspace-controlled registers are dereferenced due to several
Spectre-BTB gadgets in the syscall and interrupt handling. Based on
the new insights, we mounted even stronger attacks than the address-
translation attack including re-enabling the Foreshadow attack [248, 267],
which enables leaking host-physical memory from a guest virtual machine.
Moreover, we showed how the address-translation attack can be mounted
from restricted environments such as the Firefox browser. The paper was
published at Financial Crypto & Data Security 2021 [226] in collaboration
with Thomas Schuster, Michael Schwarz, and Daniel Gruss.

To study potential novel remote attacks, we analyzed Cloudflare’s edge-
computing solution: Cloudflare Workers. Cloudflare Workers uses a
JavaScript-based approach to intercept web requests and run small code
snippets. The main performance advantage of their approach is a single-
process design. However, a single-process JavaScript-sandboxed design
running multiple tenants within the same process is susceptible to Spectre
attacks, as Spectre can be performed in JavaScript [11, 43, 133, 207,
211, 237]. With a successful Spectre attack, the attacker can dump the
entire virtual memory, including data of other tenants. As a hardening
mechanism, access to local timers, execution time, and memory usage are
restricted. However, amplification techniques and remote timers can be
used to enable a remote Spectre attack on Cloudflare Workers leaking
120 bit/h. Using hardware performance counters, we developed, Dynamic
Process Isolation, an efficient detection and process isolation mechanism
against malicious scripts. The false-positive rate of our approach is only
0.61 % on the Cloudflare Workers. This work [221] was published at
ESORICS 2022 and was joint work with Pietro Borrello, Andreas Kogler,
Kenton Varda, Thomas Schuster, Michael Schwarz and Daniel Gruss.

We observed that all Spectre mitigations focus on introducing more
branches and memory barriers to stop transient execution. However,
none of the Spectre mitigations looked in the opposite direction of re-
ducing the number of branches. Therefore, we proposed a new approach
based on control-flow linearization and branch removal to mitigate Spectre
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attacks. To achieve this, we used the M/o/Vfuscator [60] and optimized it
in terms of binary size, compile time and run time. The overhead strongly
varies for our test set of programs from, e.g., 5% up to an overhead of
factor 1000. The paper [223] was published at Financial Crypto & Data
Security 2021 in collaboration with Claudio Canella, Michael Schwarz,
and Daniel Gruss.

Memory deduplication is used by cloud providers to reduce the memory
footprint of applications by deduplicating memory with identical content.
While several attacks were demonstrated in the past [21, 32, 84, 128, 148,
184, 238], mitigations prevent cross-security domain attacks. Afterwards,
memory deduplication has been re-enabled on Windows and Ubuntu.
Since attacks on the same security domain have not been demonstrated,
we investigated this missing spot and analyzed common server applications
and database systems for in-memory caching. We demonstrated multiple
remote attacks in this scenario, which can remotely steal database records,
fingerprint a system and break KASLR across the internet. The paper was
published at NDSS 2022 [225] in collaboration with Erik Kraft, Moritz
Lipp, and Daniel Gruss.

While working on memory-deduplication attacks, we were searching for
similar side effects based on memory accesses leading to strong timing side
channels. We discovered a novel timing side channel in several state-of-the-
art lossless compression algorithms by exploiting sequence compression
and specifically crafted memory layouts. To improve the exhaustive search
for the crafted memory layouts, we developed an evolutionary side-channel
fuzzer called Comprezzor to generate patterns that lead to byte-by-byte
leakage. Based on the layouts found by Comprezzor, we demonstrated how
timing latencies in compression algorithms can be exploited in databases to
remotely steal database records. This work will appear at S&P 2023 [222]
in collaboration with Pietro Borrello, Gururaj Saileshwar, Hanna Müller,
Daniel Gruss, and Michael Schwarz.

While looking for possible attack targets of page cache attacks [85], we
developed a novel approach to speed up the runtime of templating large
binaries. By dividing the templating into multiple layers, the runtime for
scanning large software projects, e.g., browsers, can be improved by three
orders of magnitude. Moreover, we discovered that even when the source
code does not introduce cache side channels, compiler and linker optimiza-
tions can still introduce them. With Layered Binary Templating [224],
we created a highly accurate cache-based keylogger for Chromium-based
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applications. This work will appear at ACNS 2023 [224] in collaboration
with Erik Kraft and Daniel Gruss.

1.2. Other Contributions

With NetSpectre, we analyze the preliminaries for Spectre to be exploited
in a remote setup. We present two types of code snippets, so-called gadgets,
required to perform NetSpectre. Based on the gadgets, we demonstrate a
remote Spectre attack leaking data bitwise with 1.5 bit/hour. Moreover,
we show that AVX instructions can be used instead of the cache to
remotely leak data. This paper was published at ESORICS 2019 [220]
in collaboration with Michael Schwarz, Moritz Lipp, Jon Masters, and
Daniel Gruss.

While reverse-engineering the existing Meltdown mitigations on patched
machines, we observed that loads from kernel addresses are only zeroed
out. This observation led to a novel KASLR break, which works on Linux,
SGX, Windows, and also in JavaScript. Based on the experience we got
from developing Spectre PoCs in JavaScript, we mounted Meltdown in
JavaScript on 32-bit Linux systems and evaluated it on vulnerable Intel
CPUs. The paper was published at AsiaCCS 2020 [43] in collaboration
with Claudio Canella, Michael Schwarz, Martin Haubenwallner, and Daniel
Gruss.

As edge-computing providers partially rely on a single process design [52],
there is the need for efficient in-process isolation to isolate tenants. Intel
Memory Protection Keys (MPK) enable domain-based isolation for in-
process architectures. Hence, we implemented an MPK-like mechanism
in the RISC-V architecture. We additionally evaluated our design on
the JavaScript engine V8 isolating the WASMEngine from the common
V8-accessible memory. The paper was published at the USENIX Security
Symposium 2020 [213] in collaboration with David Schrammel, Samuel
Weiser, Stefan Steinegger, Michael Schwarz, and Daniel Gruss.

After working on several attack papers in the field of microarchitectural
attacks, we concluded that a framework for fast prototyping is required.
Therefore, we developed a novel framework enabling fast and efficient
prototyping of proof-of-concept side channel attacks in native code and
browsers. We demonstrated an LVI-NULL proof-of-concept and the
first ZombieLoad proof-of-concept in an unmodified Firefox on Windows
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leveraging memory deduplication. The paper was published at USENIX
Security Symposium 2022 [63] in collaboration with Catherine Easdon,
Michael Schwarz, and Daniel Gruss.

After working on the paper on fast prototyping of microarchitectural
attacks [63], we looked in a similar direction to develop Spectre gadgets in
different programming languages. We created a framework to mistrain and
prototype Spectre-PHT gadgets in different languages and verify transient
execution by checking the cache activity. In a systematic analysis, we
verified that 26 out of 40 languages do not have any Spectre mitigations.
We also demonstrated two case studies in Java and OCAML on cryp-
tographic libraries, where we leaked key material by exploiting Spectre
gadgets. This paper was published at ICISSP 2022 [174] in collaboration
with Amir Naseredini, Stefan Gast, Pedro Miguel Sousa Bernardo, Amel
Smajic, Claudio Canella, Martin Berger, Daniel Gruss.

Intel Optane [112] is a persistent memory that enables high-performance
file accesses. Optane can be shared between multiple tenants in the cloud
and is, therefore, a valuable target for side channels. Hence, we reverse-
engineered the microarchitecture of Optane, such as caches, and the
wear-leveling mechanism. We presented new side channels on persistent
memory and demonstrated a local and a persistent remote covert channel
and an inter-keystroke timing attack. The paper will appear at USENIX
Security Symposium 2023 [156] in collaboration with Sihang Liu, Suraaj
Kanniwadi, Andreas Kogler, Daniel Gruss, and Samira Khan.

While software vulnerabilities are well studied, we investigated whether
software vulnerabilities are applicable to hardware. With ÆPIC Leak, we
discovered that undefined regions in the APIC are improperly initialized.
This enables data leakage of stale data by architecturally reading from the
undefined regions. We demonstrated new attacks on Intel SGX leaking
secret cryptographic keys from secure enclaves. ÆPIC Leak was published
at USENIX 2022 [31] in collaboration with Pietro Borrello, Andreas Kogler,
Moritz Lipp, Daniel Gruss, and Michael Schwarz.

Previous work [13] showed that exhaustion of execution ports of CPUs
can be leveraged to attack cryptographic primitives. We investigated the
separated scheduler queues per execution unit in AMD Zen processors
and Apple’s M1 processor and observed a similar resource exhaustion as
in port contention. In the SQUIP attack, we demonstrate that contention
in the scheduler queue can be exploited to create fast and stealthy covert
channels and attack cryptographic primitives like the Square-and-Multiply
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algorithm. SQUIP will appear at S&P 2023 [71] in collaboration with
Stefan Gast, Jonas Juffinger, Gururaj Saileshwar, Andreas Kogler, Simone
Franza, Markus Köstl and Daniel Gruss.

1.3. Outline

In Chapter 2 we provide the necessary background on virtual memory,
microarchitectural components, and software and hardware optimizations.
Chapter 3 summarizes the state of the art of cache attacks, transient-
execution attacks and defenses, attacks on memory optimizations, and
remote timing attacks. Chapter 4 concludes the thesis and provides an
outlook on future research directions.





2
Background

This chapter provides the necessary background for this thesis. Section 2.1
describes the fundamental concepts of virtual memory. In Section 2.2, we
elaborate on computer organization and current optimizations. Section 2.3
describes optimizations to reduce the memory utilization in main memory
and persistent storage devices. Section 2.4 defines side channels and
provides a simple example of timing side channels.

2.1. Virtual Memory

Virtual memory was created with the motivation of simplifying memory
management for programmers and to efficiently and safely share data from
main memory between multiple processes. Every process has its own full
virtual address space managed by the operating system, which cannot be
accessed by other processes. A virtual address has a corresponding physical
address. Therefore, the hardware has to resolve the virtual address to
a physical address. To enable a fast translation of virtual to physical
addresses, a concept called paging was introduced [98]. The physical
memory is divided into smaller contiguous chunks of a fixed size (page
frames). A typical design choice on the frame size (page size) on modern
systems is 4 KiB [98]. For larger contiguous physical chunks, larger page
sizes like 2 MiB and 1 GiB (huge pages) are also used, for instance, by the
Linux kernel. A virtual address is associated with one or multiple pages
of physical memory.

A page table stores multiple entries containing the mappings between
virtual and physical addresses. A single page-table entry stores the page-
frame number and additional metadata about the page frame, e.g., the
present bit, indicating whether the memory is resident in memory or not.
The page-frame number (PFN) is used to index the actual physical address

11



12 Chapter 2. Background

(PFN ⋅ page size + offset). Typically, paging is performed in multiple
levels to reduce the memory utilization of storing the page tables [98]. For
instance, in a 32-bit virtual address space with a page size of 4 KiB, and
a page table entry size of 4 B, 2

20 ⋅ 4 = 4MiB of memory are required for
the page table alone. On a multi-process system, this is very expensive in
terms of memory. Using 2-level paging, the 20 bit are divided into 10 bit
each per page-table level. The first level is used to lookup an entry in the
second level. There are 2

10
second level page tables, whereas the entries

of the second level point to the corresponding PFNs. With that split only
2
10 ⋅ 4 = 4KiB of memory is required for the first level and another 4 KiB

of memory for the corresponding second level page table.

Most currently in-use x86-64 CPUs use a 4-level paging structure with 48
bit (256 terabytes) of virtual address space. Figure 2.1 illustrates 4-level
paging on x86-64 with 4KiB pages. A CR3 register points to the base
address of the first paging level Page Map Level 4 (PML4). The bit 39:47
of the virtual address index the entry of the PML4 table. The entry in
the PML4 points to the Page Directory Pointer Table (PDPT). With the
next 9 bit 38:30 of the virtual address, the entry in PDPT is selected,
pointing to the Page Directory Table (PD). The bits 21:29 are used to
select the PD entry. Using the next 9 bits of the virtual address 12:20,
the entry in the Page Table (PT) is selected. With the page-table entry
(PTE) containing the physical frame-number, the physical page can be
determined. Translation caches [98], i.e., translation lookaside buffers
(TLB), speed up the lookups from virtual to physical addresses.

With the Ice Lake microarchitecture [141], another paging level was added,
enabling 57-bit virtual address spaces (128 petabytes). Typically, the
virtual memory space is divided by half for user space and kernel space.
The Linux operating system has a full identity mapping (direct-physical
map) of virtual addresses to physical addresses in the kernel space.

2.2. Computer Organization

In this section we discuss the most important components of modern
CPUs. We introduce pipelining, caching, and branch prediction.
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PML4I (9 b) PDPTI (9 b) PDI (9 b) PTI (9 b) Offset (12 b)

48-bit virtual address

CR3
PML4

PML4E 0

PML4E 1
⋅⋅⋅

⋅⋅⋅
PML4E 511

PDPT

PDPTE 0

PDPTE 1
⋅⋅⋅

⋅⋅⋅
PDPTE 511

Page Directory

PDE 0

PDE 1
⋅⋅⋅

⋅⋅⋅
PDE 511

Page Table

PTE 0

PTE 1
⋅⋅⋅

⋅⋅⋅
PTE 511

4 KiB Page

Byte 0

Byte 1
⋅⋅⋅

⋅⋅⋅
Byte 4095

Figure 2.1.: Virtual to physical address-translation using 4-level paging on x86-
64 [82, 149].

2.2.1. Instruction-Set Architecture

Similar to application programming interfaces (APIs), used in high-level
applications between client and server applications, an abstraction layer
for hardware and software is required. The Instruction-Set Architecture
(ISA) is like a contract (interface) between software and hardware. The
ISA not only defines the supported instructions of the CPU but also
the available registers, the handling of exceptions and interrupts, or the
memory model. Any program compiled for a certain ISA, i.e., x86, can
run on processors that implement it. The microarchitecture defines how
the ISA is implemented for a specific processor architecture [67]. This
implementation includes several components like multi-stage pipelining,
the memory subsystem, and branch prediction.

2.2.2. Pipelining

The main tasks of a simple Reduced Instruction Set (RISC) processor are
instruction fetch (IF), instruction decode (ID), execute (EX), memory
access (MEM), and write-back (WB) [98]. Instruction pipelining increases
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Figure 2.2.: Example of five stage RISC pipelining including the steps instruc-
tion fetch (IF), instruction decode (ID), execute (EX), memory
access (MEM), and write-back (WB) [98]. On every new clock
cycle, another instruction is fetched [98]. At clock cycle 5 (red),
five instructions are at five different execution stages.

the performance of a processor by splitting and parallelizing the main tasks
of a CPU into separate stages, similar to an assembly line in a factory [98].
In the IF phase, the next instruction is fetched. Afterwards, in the ID
phase, the opcode of the instruction is decoded. Then the instruction is
executed in the EX phase, e.g., an arithmetic operation is performed. If
memory was accessed, it is handled in the MEM phase. The results of the
instruction are written back and the registers updated accordingly in the
WB phase. Figure 2.2 illustrates a simple five stage RISC pipeline. At the
clock cycle 5, five instructions are at different pipeline stages. In modern
processors, there are multiple and parallel pipelines that execute instruc-
tions in an out-of-order manner [98]. Pipelining suffers from the problem
of hazards that might arise while handling different instructions. The
different types of hazards in pipelined CPUs are data hazards, structural
hazards, and control hazards. Hazards can lead to stalling, i.e., waiting
in the pipeline until a hazard is resolved.

Data hazards. Data hazards [98] take place if an instruction is data-
dependent to a previous instruction result. One example is if an arithmetic
instruction operates on the value of a register being changed by a pre-
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vious arithmetic or logic instruction. Tomasulo’s dynamic scheduling
algorithm [244] resolves the three common data-dependency hazards Read-
After-Write (RAW), Write-After-Read (WAR), and Write-After-Write
(WAW). Instead of directly using the available registers, Tomasulo pro-
posed to rename the registers to temporary registers. A common data bus
is used to forward the results to the execution units. Between frontend
and execution unit, there is a reservation station and a reorder buffer [244].
The reservation station buffers instructions and their operands. When
operands become available in the reservation stations, the corresponding
instruction is executed. WAR and WAW hazards are resolved with the
introduction of register renaming, as there is no data dependency between
the instructions as only the same register name is used. The reorder
buffer keeps track of the order and state of the instructions. When an
instruction is completed, the results are available to dependent instructions
via the common data bus. Dynamic scheduling of instructions leads to
out-of-order execution and, thus, a higher CPU performance. Note that
instructions are committed in order to guarantee the program’s correctness.
However, a fault might occur, e.g., an invalid memory access, during the
out-of-order execution, and then a pipeline stall occurs. Instructions that
were executed during out-of-order execution but are not architecturally
committed, e.g., due to a fault, are called transient instructions [44, 133].

Structural and Resource hazards. Structural and Resource hazards [98]
can occur if two instructions are in the EX phase, but there is only one
execution unit available to perform the operation. This can be considered
already by the programmer and compiler to avoid scheduling instructions
that need the same resource. Structural hazards can occur for special
execution units such as the floating point unit. To overcome that issue,
either multiple execution units of the same type can be introduced, which
is, however, costly. Structural hazards can also arise in the IF and
MEM phase. Separate caches were introduced on modern processors for
instructions (IF) and data (MEM) to prevent such structural hazards [67,
98].

Control hazards. When the outcome of branches requires additional
CPU cycles during execution, the pipeline stalls. To improve the runtime,
branch prediction tries to predict the outcome of a branching instruction.
Control hazards [98] occur due to mispredictions in the branch prediction
and speculative execution, e.g., mispredicting a conditional branch. In case
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of a misprediction, a pipeline stall occurs, the results of the speculation
have to be discarded, and the correct branch has to be executed.

2.2.3. Speculative Execution

Branch instructions lead to pipeline stalls until the outcome of a branch is
known at the execution phase. To overcome this performance bottleneck,
speculative execution was introduced. Based on the predictions of one or
multiple predictors, the predicted branch will be executed speculatively. If
the prediction was correct, the results are committed in the reorder buffer.
Conversely, if the prediction was incorrect, the results of the prediction
are discarded. For conditional branches, the predictor needs to distinguish
between taken and not taken states. Branches can also be predicted in a
static and dynamic way based on the direction of the jump (forward and
backward) and whether the branch was recently taken or not taken [98].
Similar to out-of-order execution, transient instructions might be executed
if the prediction was incorrect [44, 133]. In Chapter 3, we elaborate how
transient instructions can be exploited.

Static Prediction.

The assumption for static prediction is to assume that branches are
always taken or not taken [231]. This strategy, however, assumes that
programmers and compilers always write the more likely code in the taken
branch part [231]. Another static approach was discussed to only take
backward branches and to no take forward branches. This prediction
strategy works well for loops, as the jump instruction is typically emitted
at the end of the branch. Static prediction is not applicable for indirect
branches as the outcome of branches will be computed at runtime.

Dynamic Prediction.

A more sophisticated strategy is to base the outcome of the prediction
based on the history of taken and not taken branches at runtime [284]. In
modern processor architectures, multiple components are used to store the
history of branches. Every type of branch instruction has a corresponding
prediction mechanism [98].
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Figure 2.3.: State machine of a 2-bit predictor using a 2-bit counter [98]. If the
counter is greater than 1, the branch will be predicted as taken.

To predict conditional branches, the predictor has to decide whether the
branch will be taken or not and what the target address will be. Yeh [284]
proposed a two-level prediction scheme for conditional branches consisting
of a Branch History Register (BHR) and Pattern History Table (PHT).
The first prediction level stores the history of the last k branches in the
BHR. The value in the BHR is then used as an index for the PHT, which
has 2

k
entries. Each entry in the PHT [284] contains a table of 2-bit

predictors e.g., for a 2 bit history it has four 2-bit counters. A 2-bit
predictor predictor [284], is a 2-bit counter which increases if the branch
was taken and decreases it if was not taken. Figure 2.3 illustrates the
state machine of such a 2-bit counter. Using a 2-bit predictor, the branch
will be taken if the most-significant bit is set. A branch will be predicted
as taken if the 2-bit counter has a value greater equals 2. Predictors
with more than 2 bit did not increase the prediction accuracy, as was
shown by Yeh et al. [284]. The prediction outcome can also be globally
correlated [67] for all conditional branches, e.g., if the last n branches
were taken, then the next branch will also be taken.

A Branch Target Buffer (BTB) [67, 193] stores a mapping between the
branch address, the target address, and whether the branch should be taken
or not. Branch prediction can be performed locally for each individual
branch. In addition to the target address of branches, the target return
address can also be predicted. The Return Stack Buffer (RSB) was
introduced to predict the target address of ret instructions. Over the
time, many different branch prediction schemes evolved, such as bi-mode
branch prediction with 2 PHTs, index-sharing predictors, variable path
length predictors, and perceptron-based predictors [98, 121, 145, 235].
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2.2.4. Caching

A cache is a small and fast memory buffer that is located between the CPU
and the main memory. Caches reduce the latency for memory accesses by
buffering recently accessed code and data. If data is resident in one of the
caches it is called a cache hit. Conversely, if data is not resident in the
caches and has to be loaded from main memory, it is called a cache miss.
The smallest possible unit stored within a cache is called a cache line.
Typically, a cache line is 64 B [98]. Additional metadata is stored together
with the cache line, e.g., valid bit, and a tag. The tag is a unique identifier
for a cache line. The index selects the cache line, and the offset is used to
determine the exact location within the cache line. Both, tag and index,
can be chosen based on parts of the virtual or physical address. A common
choice for the L1 is to choose a virtually-indexed, and physically-tagged
design, where the L1 lookup is performed directly, and the TLB lookup is
performed concurrently [67].

Cache Organization. Caches can be organized in various ways. The
simplest technique is to directly map each address to a corresponding
cache line. This concept has the problem that only a single block of
data can be stored at a certain location as addresses are congruent for
different processes. In a fully-associative cache, any memory location can
be mapped to any cache location. While there is no need to use an index
to select a cache line, every tag has to be compared to locate a cache line.

A set-associative cache is a compromise between these two extremes. It
has multiple ways per index, forming a cache set [110]. Therefore, data can
be located in any of the ways of a certain set. On a cache lookup, the tag
has to be compared in every way, i.e., for an n-way associative cache, n tag
comparisons have to be performed to find the matching cache line. AMD
introduced a way predictor [16, 109], predicting which way will be selected
on a cache lookup. This technique reduces the energy consumption as
only the predicted way is first activated for the comparison.

Cache Hierarchy. Caches are typically organized in multiple levels [67,
100]. A modern CPU consists of multiple physical cores. A physical core
can include multiple logical cores, e.g., hyperthreads on Intel CPUs. This
principle is called simultaneous multithreading (SMT) [67], where one
CPU core can run multiple threads concurrently. Each core contains a



2.2. Computer Organization 19

private L1 and L2 cache and a shared last-level cache (LLC) cache between
the cores. L1 caches are divided into separate instruction and data caches.
A typical size for L1 caches on x86 CPUs with 4 KiB pages is between
16 and 64 KiB [67]. The Apple M1 CPU uses 16 KiB pages and hence,
also has the size of 128 KiB for the L1 cache of energy-efficient cores. L2
caches contain instructions and data and are typically multiple hundred
kilobytes large, e.g., 256 KiB on an Intel i5-8250U [268]. The LLC is the
slowest and largest cache with a size up to a few megabytes [268]. On
Intel CPUs, slice functions are used to split the LLC into simpler and
smaller separate caches per CPU Core [159].

Inclusiveness As modern CPUs have a multi-core design and preemptive
multithreading, the caches need to keep data coherent. The inclusiveness
decides whether a hierarchically higher cache level, e.g., L2 is higher than
L1, stores all data resident in the lower cache level. Inclusiveness speeds
up cache coherency, as only the higher level has to be looked up. A major
disadvantage is that data is redundantly stored. A cache is called inclusive,
if the data is fully present in the lower cache level. In an exclusive cache,
data is only resident in a single cache level and not redundantly stored.
Non-inclusive caches can hold data from higher cache levels, but do not
guarantee that all of the data is present. Therefore, data could be stored
multiple times or in a single level in a non-inclusive cache. On recent Intel
CPUs [98, 110] the L2 is non-inclusive to the L1 and the LLC is inclusive
to L1 and L2.

Replacement Policies As caches are limited in their size, the replacement
policy decides in which way of the set to place the data. A simple heuristic
is to replace cache lines randomly. However, this ignores the principle of
locality [98], since data recently accessed and data not recently accessed
should be treated differently. Another heuristic would be to replace
data that was least-recently used (LRU). As the age has to be tracked,
performing an actual LRU policy is too costly. Instead, an approximation
of LRU is implemented in hardware (Pseudo-LRU) [98]. Abel et al. [1] and
Vila et al. [253] reverse-engineered the replacement policies of different
cache levels of Intel CPUs.
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2.3. Memory Usage Optimizations

In this section, we will explore two fundamental techniques to reduce
the memory utilization in both main memory and disk storage: memory
deduplication and memory compression.

2.3.1. Memory Deduplication

Depending on the tasks and workload of a machine, identical memory is
mapped multiple times in the main memory. Operating systems actively
save memory by loading shared libraries only once into main memory and
creating a virtual mapping for each process. With memory deduplication,
an additional optimization was introduced in operating systems to reduce
the memory footprint. Figure 2.4 illustrates memory deduplication be-
tween two processes. A kernel thread actively scans for identical memory
pages and deduplicates them by modifying the page-table entries and map-
ping the merged page read-only (following the copy-on-write semantics).
When a process attempts to modify a merged page, the content is first
copied to a new memory location and then modified.
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(a) Step 1: Find identical pages
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Physical Address Space
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same physical address but read-only

(b) Step 2: The content is deduplicated, by modifying the page-table entry to point
to the same physical memory location and mapping the page as read-only.

Figure 2.4.: Overview of memory deduplication. Identical pages are dedupli-
cated and mapping with copy-on-write semantics.
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2.3.2. Memory Compression

Memory compression is a technique to reduce memory utilization by
modifying its representation so that the size decreases. There are two
main techniques to compress memory. The first technique is lossless
compression which ensures full reversibility for data. Lossy compression
allows information loss, which enables higher compression rates. In this
thesis, we focus on lossless compression algorithms.

Deflate

Data

LZ77

Encoding

Huffman

Encoding
Compressed

Data

Deflate

Compressed
Data

Huffman

Decoding

LZ77

Decoding Data

Inflate

Figure 2.5.: ZLib compression using LZ77 and Huffmann encoding.

DATA A A B C A B C

LZ77 (0,0,A),(1,1),(0,0,B),(0,0,C), (3,3)

Huffmann 000 001 010 011 1110

Figure 2.6.: Example for sequence compression using LZ77 and Huffmann en-
coding.

A commonly used lossless compression algorithm in gzip/zlib is Deflate [49,
58]. Deflate compresses data into a smaller lossless representation. Deflate
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consists of two main components, the Lempel-Ziv77 [58] (LZ77) encoding
and Huffmann encoding. Huffman codes are optimal and prefix-free codes
that encode the most frequent symbols with the smallest code. LZ77 works
by encoding sequences into a pair containing both length and distance to
the first occurrence, i.e., length-distance pair.

Figure 2.5 illustrates Deflate/Inflate in the zlib library. When compressing
data with Deflate, the raw data is first encoded using LZ77, and then
the LZ77 encoded data is encoded per symbol using Huffman encoding.
By default, zlib uses a sequence length of 3 characters. A look-ahead
and search buffer are used to find the longest match within the sliding
window [49].

In the Inflate algorithm, the steps are performed in reverse order by first
Huffmann decoding the compressed data and then decoding the LZ77
encoded symbols back to raw data. Figure 2.6 illustrates how a simple
sequence can be compressed using LZ77 and Huffman encoding. First, the
duplicate sequences are encoded as length-distance pairs. Then the data
is encoded into small binary codes using Huffman codes. Some algorithms
only rely on sequence encoding and skip the symbol encoding part, e.g.,
Snappy [78].

2.4. Side-Channel Attacks

A side channel is an information channel that transmits metadata corre-
lated to the execution of a program under a given input to an adversary.
Metadata can be any form of side effect during the computation of a
program, e.g., timing [132], power consumption [134], electromagnetic
radiation [12] or thermal information [106, 129]. Note that the input
is not directly accessible to an adversary. Side-channel attacks use the
metadata to derive information about the actual data being processed,
e.g., cryptographic keys. Formalized definitions of side-channel attacks
can be found in the works of Molnar et al. [167], Yuan et al. [287] and
Gruss [83].

Timing Attacks. One form of side-channel attacks are timing attacks.
Listing 2.4.1 provides a code snippet vulnerable to a timing attack. As the
PIN code is not directly accessible for an attacker, the attacker would need
to guess the correct PIN. In the worst case of this example, an attacker
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would have to try 10 000 different PINs to get the correct PIN. The strcmp
function used in the libc introduces a timing side channel by optimizing
the functions runtime. If the first compared digit is wrong, the loop will be
terminated. Conversely, if the the first digit is correct, the next byte will
be compared. This optimization introduces a timing difference for correct
and incorrect guesses, which can be exploited by the attacker to recover
the correct digits successfully. Using this timing side channel, only 40
guesses are required in the worst case for the attacker. Another real-world
example of an algorithm susceptible to timing attacks is the square-and-
multiply algorithm used for modular exponentiation in RSA [132]. In this
algorithm, a branch performs different arithmetic operations for the key
stream. For a ’1’-bit, a square and a multiply operation is performed,
and for a ’0’ bit, only a square operation is performed. Consequently, the
’1’-bit has higher latencies than a ’0’ or consume more energy.

Covert channels. In a covert channel, two parties want to establish
communication over a medium that is not intended to be used for com-
munication. The parties are not permitted to directly communicate over
a channel. Both parties agree on a medium, e.g., the cache [265], to
communicate and and a transmission protocol to establish communication.
As a protocol the parties could agree to transmit data in binary form
and in a certain time frame per bit. In contrast to a side channel, the
two parties have full control of the sending and receiving side. Moreover,
covert channels are often used to determine the true capacity of a side
channel. The true channel capacity for a binary symmetric channel is
defined as [242]:

Cap = RC ∗ (1 + (perr ∗ log2(perr) + (1 − perr) ∗ log2(1 − perr)))

RC is the raw channel capacity, i.e., the amount of information being
rawly transmitted and perr is the probability of wrongly transmitted bits.

Scope of a side-channel attack. Side-channel attacks can be performed
by physically collecting metadata or purely via software interfaces, e.g.,
by observing the file size of an encrypted file. In this thesis, we consider a
side-channel attack to be remote, if the attacker has no local software or
hardware access, and any attacker-driven activities are induced over the
network.
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1 int strcmp(const char *p1, const char *p2)

2 {

3 const unsigned char *s1 = (const unsigned char*) p1;

4 const unsigned char *s2 = (const unsigned char*) p2;

5 unsigned char c1, c2;

6 do

7 {

8 c1 = (unsigned char) *s1++;

9 c2 = (unsigned char) *s2++;

10 if (c1 == ’\0’)

11 return c1 - c2;

12 }

13 while (c1 == c2);

14 return c1 - c2;

15 }

16

17 void check_pin_code(char* user_input)

18 {

19 char* pin = "4321";

20 if(!strcmp(pin,user_input)) {

21 printf("Correct");

22 } else {

23 printf("Incorrect");

24 }

25 }

Listing 2.4.1.: Example for a simple timing channel caused by the strcmp
function used in the Glibc [74].

Side channels are not only introduced by algorithms but also by compilers
and the underlying hardware, i.e., the microarchitecture. Side channels
based on microarchitectural side effects are referred to as microarchi-
tectural side channels. Optimizations often introduce side channels in
the underlying microarchitecture, such as caches, branch prediction, and
out-of-order execution. We provide more details on microarchitectural
side-channel attacks and timing attacks in Chapter 3.
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State of the Art

Microarchitectural attacks and defenses have been well studied over the
last decades [9, 27, 72, 82, 83, 149, 214, 233, 239, 277]. In this chapter, we
discuss the state-of-the-art on cache attacks, transient-execution attacks
and defenses in Section 3.1. We discuss attacks and defenses on memory
deduplication and compression in Section 3.3. Finally, Section 3.4 provides
an overview of existing remote timing attacks.

3.1. Cache Attacks

Cache attacks exploit the timing difference between memory accessed
in the cache compared to memory accessed from DRAM. The attacker
measures the latency of memory accesses to derive whether data has been
accessed by a victim application recently. To measure the subtle timing
difference between cached and uncached data, an attacker requires a high-
resolution timer. With a high-resolution timer, e.g., on x86, the rdtsc

instruction, the attacker can measure the access times of the different
cache levels and the DRAM. Schwarz et al. [219] created a high-resolution
timer by leveraging a timing thread.

Hu [102] mentioned that cache covert channels can be used to extract
sensitive information. Kocher [132] described timing differences in different
microarchitectural components, including caches and branch prediction.
Based on that assumption, Kocher [132] presents an attack on RSA that
exploits timing differences in modular exponentiation caused by performing
only a single multiplication or a squaring operation depending on the
key bits of the private key. Kelsey et al. [127] discussed potential cache
side-channel attacks on cryptographic algorithms. Tsunoo et al. [246]
demonstrated cache attacks on DES.

27
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3.1.1. Cache Eviction.

In a noisy real-world environment, repeated measurements are required
for cache attacks. Therefore, to successfully perform cache attacks, an
attacker requires a primitive to invalidate target cache lines efficiently. On
x86 and ARM, there are special instructions for directly evicting a cache
line, e.g., clflush on x86. However, such instructions are only helpful for
cache eviction if attacker and victim share the same physical addresses,
e.g., a shared library.

A naive and costly alternative would be to occupy the entire LLC and evict
the entire data. Schwarz et al. [220] showed that remote attackers can
evict the LLC by thrashing the cache via file downloads. Streamline [208]
uses self eviction using a large shared array as an alternative to the
flush instruction. A more efficient approach is to evict the target data
by using multiple congruent addresses pointing to the same cache set.
An eviction set is a set of congruent addresses, that when accessed in
specific order, evicts a target address from the cache. Finding eviction
sets can be challenging as there are complex addressing functions used
in modern processors [159]. Moreover, knowledge of physical addresses
can be required for the attacker, as different cache levels may use physical
addresses for set indexing. Static and dynamic approaches can be used to
create efficient and minimal eviction sets [34, 88, 115, 151, 159, 183, 232,
254].

3.1.2. Evict+Time

Bernstein [24] attacked AES with the idea of evicting data from the shared
L1 cache and then timing the execution time of the encryption. Based
on the time, the attacker learns which data was accessed by the target
application. Concurrently, Percival [191] showed that cache misses can be
used to recover parts of an RSA secret key. Osvik et al. [183] generalized
the idea of cache attacks on cryptographic primitives and called this
technique Evict+Time.

First, the attacker starts measuring the runtime and triggers an encryption
using the targeted cryptographic primitive, e.g., AES. Then, the attacker
evicts a certain cache set by accessing an eviction set. Finally, the attacker
computes the overall runtime of the execution. If the attacker observes
a slower encryption time, the data has been reaccessed and had to be



3.1. Cache Attacks 29

fetched from main memory. Evict+Time was used to steal cryptographic
key material [6, 80, 119, 137, 144, 162, 183, 234] and breaking ASLR [80,
103].

3.1.3. Prime+Probe

Osvik et al. [183] further described another cache attack called Prime+
Probe. In Prime+Probe, the attacker tries to examine the cache state
after the encryption. Prime+Probe requires the attacker to create an
eviction set.

In the prime step, the attacker accesses the eviction set, to fully occupy
the target cache sets. Then, the attacker triggers an encryption for a
known plaintext. The encryption evicts data that was cached. Finally,
the attacker probes the access time over all elements in the eviction set.
The attacker observes whether the encryption replaced any part of the
eviction set and can infer information about the secret encryption key.

Prime+Probe was first used to attack the L1D and L1I caches [2–5, 8, 29,
35, 175, 183, 191, 245, 291]. By reverse-engineering the complex mapping
functions, attacks on the LLC became possible [72, 73, 96, 107, 108,
115, 125, 155, 159, 202, 258]. Besides attacking cryptographic primitives
in software and hardware, Prime+Probe was also used to create covert
channels and to detect co-location in the cloud [205, 286], spy on user
behavior in the browser [182, 217, 230], attack or perform attacks from
secure enclaves [33, 56, 79, 139, 164, 215], and GPUs [61, 62].

3.1.4. Flush+Reload

The flush instructions provided by the ISA can be used to directly evict
data from the cache. Gullasch [94] developed a first attack based on the
x86 clflush instruction. Yarom et al. [283] generalized such flush-based
attacks to Flush+Reload, where the attacker uses the clflush instruction
to evict cache lines from shared memory, e.g., shared libraries, to observe
cache activity from other applications.

The idea of Flush+Reload is as follows. First, the attacker flushes the
shared target cache line out of the cache. Then, a victim application
runs and causes cache activity. Finally, by reloading the shared cache
line, the attacker can distinguish if the shared cache line was accessed or
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not. One major requirement for Flush+Reload is, that there is shared
memory between attacker and victim. The shared mapping enables the
attacker to directly flush the victim’s data as shared memory is shared in
the LLC. Flush+Reload is a very accurate and reliable cache attack [283]
that was used in various works to attack cryptographic primitives, spy on
keystrokes and create covert communication [14, 15, 23, 39, 70, 81, 90, 94,
95, 107, 116–118, 192, 195, 282, 283, 289, 290].

3.1.5. Further Cache Attacks

The flush instruction can also be replaced in Flush+Reload with eviction in
restricted environments, which results in an Evict+Reload attack [90, 151].
In Flush+Flush [89] only the clflush is used as a cache side channel. The
clflush instruction takes more time for cached data that was accessed by
the victim than for non-cached data. The cache replacement policy was
also exploited to mount powerful attacks on cryptographic primitives and
in the browser [34, 237, 276]. Purnal et al. [197] presented Prime+Scope
improving the time resolution of Prime+Probe. Disselkoen et al. [59]
showed that the Probe step in Prime+Probe can be replaced with an
asynchronous ABORT in Intel’s TSX. Lipp et al. [152] demonstrated
that the mispredictions in the L1 way predictor can also be exploited.
Similar to hardware caches, software caches, e.g., the page cache [85] can
be exploited based on whether data is resident in the cache or not.

3.2. Transient-Execution Attacks and Defenses

Speculative execution and branch prediction are another microarchitectural
component that is susceptible to side-channel attacks. Attackers exploited
branch prediction to spy on cryptographic primitives [7, 10, 38], perform
ASLR breaks [64], recover the control-flow of an Intel SGX enclave [146],
and to leak secrets within SGX enclaves [65, 104].

Transient instructions are executed during out-of-order and speculative
execution. These instructions are never architecturally committed but can
influence the microarchitectural state, e.g., the cache. In 2018, Kocher et al.
[133] discovered a powerful attack named Spectre, which leaks data by
exploiting speculative execution. Concurrently, the Meltdown attack [153]
was published, which exploits delayed exception handling during out-of-
order execution. Meltdown enables an attacker to access an arbitrary
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memory location, including data from kernel space, during transient
execution. Meltdown and Spectre formed the new research direction of
transient-execution attacks [44, 133].

Canella et al. [44] introduced a systematization of transient-execution
attacks. They classified the attacks based on their root causes. One
class is Meltdown-type attacks, where delayed exception handling during
out-of-order execution leads to transient execution. The other class is
Spectre-type attacks, exploiting speculative execution. The time window,
i.e., a number of instructions executed transiently, is referred to as transient
window and bound by the size of the reorder buffer [44].

3.2.1. Spectre-type Attacks

Analogous to Return-Oriented-Programming (ROP) [228], small code
snippets, i.e., gadgets, are used to describe situations where a certain
branch prediction component can be transiently exploited.

Spectre-PHT. Listing 3.2.1 illustrates a Spectre-PHT gadget [44, 133].
In this example, the attacker controls the index variable and can trigger
a certain branch repeatedly. The attacker can mistrain the PHT by
sending multiple in-bounds indices until the branch prediction predicts the
branch to be always taken. On the subsequent access, the attacker uses an
out-of-bounds index to access the secret data. The second load encodes
the leaked byte of data into the cache by accessing the lookup table
at a certain offset. In this example, the lookup table is large enough
to cover 256 different cache lines. While the branch will not be taken
architecturally, the transient execution still performs the cache access.

Using a cache attack like Flush+Reload, the attacker can now recover
the secret. The mistraining of the target branches can occur within
the same address space or across address spaces [44, 133]. Moreover,
due to the fact that only parts of the addresses are used for the branch
prediction, there are congruent addresses, which can be used to mistrain
the branch prediction as well [44, 133]. Göktas et al. [77] demonstrated
how speculative control-flow hijacking in the Linux kernel can be used to
break KASLR and to perform a privilege escalation.



32 Chapter 3. State of the Art

1 char* secret = "This is a SECRET.";

2 unsigned char* data = "data";

3 if (index < strlen(data))

4 {

5 return lookup_table[data[index] << 12];

6 }

Listing 3.2.1.: Example for a Spectre-PHT gadget [44, 133].

Spectre-BTB. Spectre-BTB targets the BTB, which is to predict out-
come of indirect call or jump instructions. The branch instruction jumps
to a dereference of a general-purpose register, e.g., jmp* rax. Typical
susceptible gadgets for Spectre-BTB are function pointers, e.g., jump
tables and vtables in C++. Similar to ROP [133] the attacker tries to
re-uses small code chunks that will be transiently executed to leak data.

In a typical Spectre-BTB scenario, the attacker can actively call different
targets of a jump table and controls the parameter of a register. The
register is dereferenced, and the value is encoded into the cache. Again,
the attacker can use out-of-bounds values and a cache attack to leak
arbitrary data within the process. Horn [101] demonstrated that eBPF
can be leveraged to create indirect branch instructions in the kernel to
leak arbitrary memory. Spectre attacks have also been demonstrated in
browsers [11, 133, 157, 161, 176, 221, 237, 269] and SGX [178]. In Chap-
ter 5, we show how a Spectre-BTB gadget in the Linux kernel can be used
to revive the Foreshadow attack. Barberis et al. [20] demonstrated that
the BHB can be used in combination with a crafted Spectre-BTB gadget
in the Linux kernel to leak data across security domains and even break
state-of-the-art mitigations.

Spectre-RSB. The RSB can also be exploited by mistraining instructions
related to function calls, e.g., call, ret, and pop [157]. The x86-64
architecture uses the stack to store the return address and old base
pointer, when calling a function. If the attacker has control over the stack,
the attacker can always mistrain the RSB as follows.

Listing 3.2.2 illustrates how manipulating the return address on the stack
leads to speculative execution caused by a misprediction in the RSB.
First, there is a call to manipulate (Line 1) which pushes the address
of speculation to the RSB. However, manipulate overwrites the return
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1 call 0x40137 <manipulate> ; push target to RSB

2 speculation:

3 mov ecx, 0x12341234 ; runs in speculation

4 mov rax, QWORD PTR [rcx] ; read from arbitrary address

5 jmp end

6 manipulate: ; 0x40137

7 lea eax, ds:0x40114f ; load address of end

8 mov DWORD PTR [esp],eax ; manipulate stack pointer

9 ret

10 end: ; 0x40114f

11 ret

12

Listing 3.2.2.: Example of Spectre-RSB (specpoline) [44, 135]. The manipulate
block actively manipulates the return address and causes
transient-execution of the speculation block.

address located on the stack and returns. The return target will be
speculatively executed, leading to transient-execution at Line 3. Since the
return address was modified, the results of the speculative execution will
be discarded and the end branch will be executed. This primitive can be
used to create a trampoline into speculation, i.e., specpoline.

The RSB can underflow, thus, there is a fallback to the BTB [133, 135].
Wikner et al. [269] reverse-engineered the RSB on current Intel CPUs and
demonstrated Spectre-RSB on Firefox. Retbleed [270] exploits Spectre-
RSB on AMD CPUs and showed that active mitigations in the Linux can
be circumvented.

Spectre-STL. Store-to-Load (STL) forwarding is a hardware optimiza-
tion, which speculatively forwards previous stores to a load. The memory
disambiguator predicts whether loads can be speculatively executed [44,
101]. However, the CPU only uses the lower 12 bit for this optimization.
Horn [44, 101] showed that the memory disambiguation can exploited
to speculatively bypass store instructions. Again, using a side channel,
the transiently loaded data could be leaked. Listing 3.2.3 illustrates how
a store operation can be bypassed and arbitrary memory speculatively
accessed.
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1 /* Based on

2 https://github.com/IAIK/transientfail/blob/master/pocs/

3 spectre/STL/main.c

4 */

5 uint8_t* data = target_area;

6 uint8_t** data_slowptr = &data;

7 uint8_t*** data_slowslowptr = &data_slowptr;

8

9 // trigger memory disambiguation with store

10 // but the store will be circumvented

11 (*(*data_slowslowptr))[index] = 0;

12

13 /* Leak data at target index */

14 lookup_table[target_area[index] << 4096];

15

Listing 3.2.3.: Example of Spectre-STL using pointer chaining [44, 45, 101].

Further Spectre Attacks. Speculative execution of direct jumps, i.e.,
straight-line speculation, was also exploited [18, 189]. We mounted Spectre
attacks to different programming languages like Java and Go [174]. Instead
of the cache, other side channels can be used to transiently encode data into
a side channel transiently. In NetSpectre [220], we used vector instructions
(AVX) to transiently leak data. Bhattacharyya et al. [26] and Fustos
and Yun [68] used port contention to encode secret data. Weber et al.
[266] found a novel side channel in the timing of the floating-point unit.
Lipp et al. [152] demonstrated a Spectre attack encoding data through
timing differences caused by collisions in the AMD way predictor. Ren et al.
[204] used a side channel in the cache for micro-operations to perform
Spectre attacks. Xu et al. [278] exploited a timing side channel in the
frontend bus of Intel processors and demonstrated a Spectre attack.

Finding Spectre Gadgets. Finding Spectre gadgets is a challenging
task as compilers can generate different instructions depending on the
optimization levels and gadgets can be versatile [44, 122]. There are two
main challenges in finding Spectre gadgets. First, the form of Spectre
gadgets must be determined. Second, once a gadget that fits the form
has been found, it must be determined whether it is exploitable in an
attack. Kocher [133] provided 15 main examples how Spectre-PHT gadgets
can look like. Static tools were developed to find Spectre gadget code
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patterns [53, 201]. However, static approaches suffer from a large number
of false positives.

Spectector [92] leverages symbolic execution to find Spectre-PHT gadgets
in binaries. This approach formally proofs that there are no Spectre
gadgets inside the binary. For this purpose, Spectector leverages symbolic
execution and tracking of memory accesses and jump targets. Several
further approaches are based on formal methods, symbolic execution,
and taint tracking [28, 48, 57, 91–93, 216, 259, 260]. The problem
with such approaches is that for large software projects, the symbolic
execution suffers from path explosion and does not scale. Fuzzing-based
approaches [105, 122, 180, 198] improved the runtime of gadget detection
significantly. FastSpec [243] encodes assembly snippets with Google’s
BERT framework and trains a GAN with mutated Spectre gadgets. The
GAN generated about 1 million different gadgets [243]. Various works used
hardware performance counters to actively detect side-channel attacks [50,
89, 97, 99, 114, 158, 172, 190, 261, 262, 288, 292].

Spectre Mitigations. Researchers and vendors proposed to fix Spectre at
the software, kernel, firmware, and hardware level [44]. The most expen-
sive mitigation is to disable speculative execution [133]. For conditional
branches, Intel proposed to use memory barriers, e.g., lfence instructions.
Moreover, Intel offered interfaces to clear predictor states, e.g., clear the
BTB [113]. Retpoline [247] uses a similar code sequence as in Listing 3.2.2
but with the addition of a speculation barrier. The compiler community
proposed pointer masking and automated insertion of memory barriers to
mitigate Spectre [173, 177, 179, 187, 229, 293]. Several works developed
hardware-software co-designs to mitigate Spectre attacks [69, 136, 147,
216, 240, 256, 294]. Specfuscator (cf. Chapter 7) mitigates Spectre attacks
by linearizing the control flow. Similarly, Borrello et al. [30] used control-
flow linearization to protect cryptographic libraries. However, such an
approach also mitigates Spectre attacks if the control flow is linearized.
Browser vendors implemented process isolation [203] to efficiently mitigate
in-process Spectre attacks. A more in-depth systematization of Spectre
defenses were performed by various studies [41, 44, 47, 277].
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1 // handle null-pointer exception

2 char data = *( char *) 0xffffffff8ca000fe;

3 *(volatile char*) NULL;

4 lookup_table[data * 4096] = 0;

Listing 3.2.4.: Meltdown [44, 153] example. A kernel address is dereferenced
and the result encoded into the cache, which can be recovered
with Flush+Reload.

3.2.2. Meltdown-type Attacks

Meltdown-type attacks exploit transient execution caused by delayed
exception handling during out-of-order execution [153]. During transient
execution the accessed data is loaded from the L1 and can be leaked via a
side channel [113].

The first Meltdown variant, Meltdown-US [44], successfully leaks userspace-
inaccessible kernel data. Listing 3.2.4 illustrates how Meltdown-US leaks
arbitrary kernel memory. First, the attacker dereferences a null-pointer to
create a large transient window. Then, the attacker actively loads data a
kernel address and encodes it into the cache. Again, using a cache attack
like Flush+Reload, the attacker can recover the leaked value. Another
important Meltdown-type attack was Meltdown-P (cleared present bit),
also known as Foreshadow. Foreshadow enables attacks on SGX and also
leakage of hypervisor data [248, 267]. Meltdown-type effects have been
found at different microarchitectural locations, e.g., FPU registers and the
read-only bit [44, 131, 236]. Mainly Intel CPUs were susceptible to most
Meltdown-type attacks. However, AMD, IBM, ARM and Samsung CPUs
were also susceptible to Meltdown-type attacks caused by delayed exception
handling [44, 171]. Based on the Meltdown effect, microarchitectural data-
sampling attacks, have been found on various contexts such as browsers,
virtualization software, and secure enclaves leaking data from various
buffers and load ports [40, 44, 166, 200, 207, 210–212, 218, 275]. LVI
turned the Meltdown effect around by transiently injecting values into a
victim to achieve transient data-flow hijacking [249]. Similar to Spectre,
LVI requires certain gadgets to perform a successful attack.

Mitigations against Meltdown-type Attacks. Meltdown attacks exploit
transient execution caused by delayed exception handling. The first
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mitigation to Meltdown-US was the KAISER patch which unmaps the
kernel space when a thread runs in the context of a user to prevent
transient leakage of kernel memory [75, 86]. Intel patched the Meltdown
vulnerability in hardware, starting with the Cascade lake architecture.
Canella et al. [43] showed that zeroing out the values on the Cascade
Lake architecture is insufficient to fully mitigate against Meltdown-type
effects. MDS-attacks like RIDL [211] and Zombieload [218] showed that
Meltdown-resistant CPUs can still have transient data leakage. As these
attacks exploit private components on a CPU core, another suggested
mitigation was to disable SMT completely [140]. While MDS attacks
have also been mitigated in hardware with the Ice Lake architecture,
Moghimi [165] showed that MDS effects can still occur. A thorough
analysis of the mitigations of Meltdown-type attacks was performed by
Canella et al. [42, 44] and Cauligi et al. [47].

3.3. Attacks on Memory Usage Optimizations

In this section, we will discuss existing attacks on memory deduplication
and memory compression. Moreover, we will discuss the state-of-the-art
defenses against memory-deduplication attacks and memory-compression
attacks.

3.3.1. Memory Deduplication

Memory deduplication is a technique used in operating systems to reduce
the amount of duplicated memory. This technique marks pages with
identical contents and maps all entries to the same physical location. As
the memory is marked as read-only, a timing side-channel exists when
overwriting a single deduplicated memory location as a copy-on-write
pagefault is triggered. Memory-deduplication attacks were used to detect
co-location in data centers [238, 271], covert communication [273, 274],
OS and website fingerprinting via native code and JavaScript [84, 148,
184], break ASLR [21], perform browser sandbox escapes via Rowhammer
and password leakage on web servers [32]. Palfinger et al. [186] showed
that file systems are susceptible to deduplication attacks. Kim et al. [128]
presented a KASLR break on VMWare ESXi using techniques similar to
the KASLR break in remote memory-deduplication attacks (Chapter 8).
Barua et al. [22] demonstrated a Rowhammer attack combined with
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memory-deduplication attacks on industrial control systems to inject false
commands into programmable logic units. DUPEFS [19] demonstrated
remote leakage of OAuth tokens by exploiting memory deduplication on
file systems. In concurrent work to our remote memory-deduplication
attacks (Chapter 8), Costi et al. [54] evaluated the security of same-domain
memory deduplication in a client-server setup and exploited a cross-tab
scenario on Firefox using JavaScript.

The most simple mitigation to prevent memory-deduplication attacks, is
to disable memory deduplication. Windows offers an option to disable
memory deduplication per process [163]. Another alternative proposed by
Bosman et al. [32] is to deduplicate only zero-initialized pages. VMWare
TPS [255] uses a unique key per virtual machine to mitigate cross-VM
deduplication attacks. Wang et al. [263] focus on hooking the rdtsc

instruction of the virtual machine and monitoring the number of pagefaults.
Oliverio et al. [181] enforce a fake merging of pages such that an attacker
cannot distinguish a correctly guessed page from an incorrectly guessed
page.

3.3.2. Memory Compression

Compression is widely used in operating systems, the web, and various
applications [17, 37, 66, 169, 194, 196, 285]. Similar to memory deduplica-
tion, compression algorithms can be used to reduce memory utilization.
In 2002, Kelsey et al. [126] presented a compression attack based on the
compression ratio of plaintext that is first compressed and then encrypted.
If attacker-controlled data is compressed together with secret data, an
attacker can guess the content of the secret. Based on the compression
ratio, the attacker can derive whether the attack was correct or incor-
rect. There are scenarios, e.g., in HTTP, where both attacker-controlled
input and secret input, e.g., web cookies, are compressed. Thus, if the
attacker performs a guess and monitors the packet length of a TLS packet,
an attacker can derive the secret cookie. Several attacks exploited the
compression ratio side channel [25, 76, 124, 206, 251, 252]. We show that
various compression algorithms also reveal a timing side channel due to
corner cases in Chapter 9.

The most simple mitigation to mitigate memory-compression-based at-
tacks, is to avoid compressing sensitive data together with attacker-
controlled data. Mutexion [168] mutually excludes co-location of sen-
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sitive data and attacker-controlled data for HTTP by using automated
secret annotations. SafeDeflate [296] prevents compression-ratio attacks
by blocking certain keywords. Taint tracking was used to find HTTP
responses containing both secret and attacker-controlled data [188]. An-
other mitigation is to disable the LZ77 part [123], leading to an additional
runtime overhead in HTTP of up to 500 %.

3.4. Remote Timing Attacks

Brumley and Boney et al. [36] demonstrated remote timing attacks ex-
tracting SSL private keys by remotely inferring cache timings. Based
on Bernstein’s idea of attacking AES [24] several remote-timing attacks
on AES have been demonstrated [15, 120, 209, 295]. Acıiçmez et al. [6]
remotely attacked AES via a cache side-channel attack. Crosby et al. [55]
presented the box test, a method to effectively determine the number
of required packets to distinguish timing differences over the network.
Irazoqui et al. [117] demonstrated an attack on TLS in a LAN which
exploits cache timing differences. The TIME [25] attack abused the com-
pression ratio to modify the size of TCP windows and amplify the timing
differences between correct and incorrect cookie guesses. With the Heist
attack, Vanhoef et al. [252] exploited HTTP/2 features to observe the
exact size of a cross-origin resource. Van Goethem et al. [250] showed
that the packet order in HTTP/2 concurrent requests can be used to
perform remote timing attacks without relying on timing information.
Based on that result, they successfully attacked HTTP/2 web servers,
Tor onion services, and Wi-Fi authentication methods. Gruss et al. [85]
demonstrated a remote timing attack by exploiting the page cache on
Windows and Linux. Schwarz et al. [220] mounted the remote Spectre
attack and transiently leaked arbitrary data across the network. Kurt et al.
[138] presented a remote attack spying on keystrokes entered in an SSH
session by exploiting a remote cache side-channel attack. Wang et al.
[264] showed that dynamic voltage frequency scaling can be exploited
to perform remote timing attacks on a post-quantum key encapsulation
mechanism.

To mitigate remote timing attacks, the first approach is to eliminate the
root cause of the timing leakage by mitigating the timing side channel. If
this is not possible, network countermeasures can be used to add artificial
noise to the response packets round-trip time. Moreover, as still many
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request packets are required to just leak a single bit [220], distributed
denial-of-service attack (DDoS) protection systems might detect such
attacks. Thus, there is a tradeoff between the leaked bits and the number
of packets sent per second.



4
Conclusion and Outlook

In this thesis, we took a deep dive in how attackers can mount remote side-
channel attacks and how side-channel attacks can be actively mitigated.
We draw the following conclusions from our results.

Amplification of Side-Channel Attacks. Mounting remote side-channel
attacks is practical if attackers are able to amplify the latency of side
channels. We demonstrated that memory deduplication and compression
algorithms can reveal latencies that are distinguishable across several hops
across the internet [222, 225]. Both techniques are broadly applicable,
and the impact of the remote attacks is unclear yet. For many side-
channel attacks, it is still unclear whether they can be amplified to
mount successful and remote attacks. Recently, Xiao [272] showed that
timing differences can be amplified by leveraging port contention and
cache replacement policies. We expect future research to discover further
techniques to amplify side channels, perform remote attacks and overcome
low-resolution timers, e.g., used in browsers [237, 272]. Moreover, while
the throughput of the attacks we demonstrated is in the range of multiple
hundred bytes across the internet [222, 225], we expect remote side-channel
attacks to become more dangerous with faster internet connections.

Spectre Mitigations. As speculative execution is a design choice, CPU
vendors cannot simply eliminate this optimization without large perfor-
mance losses [133, 143, 161]. Especially in single-process applications, it
is hard to mitigate Spectre attacks [161]. While companies like Google
already gave up on mitigating Spectre for single-process applications [161,
203], we demonstrated that there is still space left open for creating effi-
cient and performant mitigations. Together with Cloudflare, we created
a dynamic detection and mitigation that dynamically isolated malicious

41
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scripts. With hardware-assisted features like protection keys [213], in-
process isolation can be enabled. Future work should research isolation
for complex software such as operating systems and browsers to mitigate
against transient-execution attacks. There is still huge potential to create
novel mitigations like Specfuscator [223] by changing the perspective on
a certain problem. While there has been ongoing research in finding
Spectre gadgets, there is still potential to create more accurate detection
mechanisms.

Automatic Side-Channel Discovery and Root-Cause Analysis. Auto-
matically finding and detecting side channels helps improving the security
of software and hardware. Moreover, automatic discovery can also help to
determine the root cause of side channels. We showed that the address-
translation attack attributed to the prefetch instruction was actually
possible due to speculative execution [226]. Using a fuzzer, we discovered
novel timing side channels in various compression algorithms [222]. By
using an automated cache templating technique [224], we discovered that
keystrokes entered in Chromium-based applications can be leaked with a
cache side channel. We showed that compilation and linking can introduce
cache-side channels.

Outlook. In general, there is an ongoing trend to reduce hardware’s
energy consumption. This reduction might introduce novel side chan-
nels. Moreover, research already showed that timing differences caused
by frequency throttling can introduce a timing side channel [154, 264].
Therefore, we expect future research to investigate the security impact of
energy optimizations further.

Moreover, the market share for software-as-a-service is still increasing [280].
While this has many advantages in terms of costs, performance, and
scalability, the customers’ data has to be protected from remote attackers.
Especially if resources such as hardware or software are shared between
tenants, more side-channel attacks can be expected. As we demonstrated
remote attacks in both sandboxed applications like browsers and solely
via remote APIs, we expect more side-channel attacks on such systems.
Therefore, we expect future research to discover remote timing attacks on
the network, application, and hardware layers.

Complex optimizations in software and hardware are likely to introduce
new side channels. Moreover, software-based side-channel attacks have



References 43

become more practical and dangerous during the last years. Automated
discovery of side channels could improve the security for both software
and hardware development. Therefore, we expect research on automated
discovery of side channels within commodity software and hardware. Fu-
ture work should investigate how to integrate such tools into continuous
software and hardware development.
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[96] Berk Gülmezoğlu, Mehmet Sinan Inci, Gorka Irazoqui, Thomas
Eisenbarth, and Berk Sunar. “Cross-VM cache attacks on AES.”
In: IEEE TMCS 2.3 (2016), pp. 211–222.
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Eisenbarth, and Berk Sunar. “Seriously, get off my cloud! Cross-
VM RSA Key Recovery in a Public Cloud.” In: Cryptology ePrint
Archive (2015).

[109] Koji Inoue, Tohru Ishihara, and Kazuaki Murakami. “Way-
predicting set-associative cache for high performance and low energy
consumption.” In: Low Power Electronics and Design. 1999.

[110] Intel. Intel 64 and IA-32 Architectures Optimization Reference
Manual. 2019.



52 Chapter 4. Conclusion and Outlook

[111] Intel. Intel Analysis of Speculative Execution Side Channels. 2018.
url: https://software.intel.com/security-software-guidance/
api - app / sites / default / files / 336983 - Intel - Analysis - of -

Speculative-Execution-Side-Channels-White-Paper.pdf.

[112] Intel. Intel Optane DC Persistent Memory. 2021. url: https://www.
intel.com/content/www/us/en/architecture- and- technology/

optane-dc-persistent-memory.html.

[113] Intel. Intel Speculative Execution Side Channel Mitigations. 2018.
url: https://www.intel.com/content/dam/develop/external/

us/en/documents/336996-speculative-execution-side-channel-

mitigations.pdf.

[114] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. “MASCAT:
Preventing microarchitectural attacks before distribution.” In: CO-
DASPY. 2018.

[115] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. “S$A: A
Shared Cache Attack that Works Across Cores and Defies VM
Sandboxing – and its Application to AES.” In: S&P. 2015.

[116] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. “Know Thy Neighbor: Crypto Library Detection in Cloud.”
In: PETS 2015.1 (2015), pp. 25–40.

[117] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. “Lucky 13 Strikes Back.” In: AsiaCCS. 2015.

[118] Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk
Sunar. “Wait a minute! A fast, Cross-VM attack on AES.” In:
RAID. 2014.

[119] Himanshi Jain, D Anthony Balaraju, and Chester Rebeiro. “Spy
Cartel: Parallelizing Evict+ Time-Based Cache Attacks on Last-
Level Caches.” In: Journal of Hardware and Systems Security 3.2
(2019), pp. 147–163.

[120] Darshana Jayasinghe, Jayani Fernando, Ranil Herath, and Roshan
Ragel. “Remote cache timing attack on advanced encryption stan-
dard and countermeasures.” In: ICIAFs. 2010.
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Abstract

In this paper, we provide a systematic analysis of the root cause of the
prefetching effect observed in previous works and show that its attribution
to a prefetching mechanism is incorrect in all previous works, leading to
incorrect conclusions and incomplete defenses. We show that the root
cause is speculative dereferencing of user-space registers in the kernel.
This new insight enables the first end-to-end Foreshadow (L1TF) exploit
targeting non-L1 data, despite Foreshadow mitigations enabled, a novel
technique to directly leak register values, and several side-channel attacks.
While the L1TF effect is mitigated on the most recent Intel CPUs, all
other attacks we present still work on all Intel CPUs and on CPUs by
other vendors previously believed to be unaffected.

5.1. Introduction

For security reasons, operating systems hide physical addresses from user
programs [33]. Hence, an attacker requiring this information has to leak it
first, e.g., with the address-translation attack by Gruss et al. [16, §3.3 and
§5]. It allows user programs to fetch arbitrary kernel addresses into the
cache and thereby to resolve virtual to physical addresses. As a mitigation
against e.g., the address-translation attack, Gruss et al. [15, 16] proposed
the KAISER technique.

Other attacks observed and exploited similar prefetching effects. Melt-
down [41] practically leaks memory that is not in the L1 cache. Xiao et al.
[73] show that this relies on a prefetching effect that fetches data from
the L3 cache into the L1 cache. However, Van Bulck et al. [67] observe no
such effect for Foreshadow.



5.1. Introduction 73

We systematically analyze the root cause of the prefetching effect exploited
in these works. We show that, despite the sound approach of these papers,
the attribution of the root cause, i.e., why the kernel addresses are cached,
is incorrect in all cases. The root cause is unrelated to software prefetch
instructions or hardware prefetching effects due to memory accesses and
instead is caused by speculative dereferencing of user-space registers in
the kernel. While there are many speculative code paths in the kernel,
we focus on code paths with Spectre [6, 34] gadgets that can be reliably
triggered on both Linux and Windows.

These new insights correct several wrong assumptions from previous
works, also leading to new attacks. Most significantly, the difference that
Meltdown can leak from L3 or main memory [41] but Foreshadow (L1TF)
can only leak from L1 [67, Appendix A], was never a limitation in practice.
The same effect that allowed Meltdown to leak data from L3, enables our
slightly modified Foreshadow attack to leak data from L3 as well, i.e.,
L1TF was in practice never restricted to the L1 cache. Worse still, we
show that for the same reason Foreshadow mitigations [67, 70] are still
incomplete. We reveal that Foreshadow attacks are unmitigated on many
kernel versions even with all mitigations and even on the most recent
kernel versions. However, retpoline affects the success rate, but it is only
enabled on some kernel versions and some microarchitectures.

We present a new technique that uses dereferencing gadgets to directly
leak data without an encoding attack step. We show that we can leak data
from registers, e.g., cryptographic key material, from SGX and that the
assumptions in previous works were incorrect, making certain attacks only
reproducible on kernels susceptible to speculative dereferencing, including,
e.g., results from Gruss et al. [16, §3.3 and §5], Lipp et al. [41, §6.2], and
Xiao et al. [73, §4-E]. This also allowed us to improve the performance
of address-translation attacks and to mount them in JavaScript [16]. We
demonstrate that the address-translation attack also works on recent Intel
CPUs with the latest hardware mitigations with all mitigations enabled.
Finally, we also demonstrate the attack on CPUs previously believed to
be unaffected by the prefetch address-translation attack, i.e., ARM, IBM
Power9, and AMD CPUs.

Contributions The main contributions of this work are:

1. We discover an incorrect attribution of the root cause in previous works
to prefetching effects [16, 41, 73].
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2. We show that the root cause is speculative execution, leaving CPUs
from other vendors equally affected and the effect exploitable from
JavaScript.

3. We discover a novel way to exploit speculative dereferences, enabling
direct leakage data in registers.

4. We show that this effect, responsible for Meltdown from non-L1 data,
can be adapted to Foreshadow and show that Foreshadow attacks on
data from the L3 cache are possible, even with Foreshadow mitigations
enabled.

Outline Section 5.2 provides background. Section 5.3 analyzes the root
cause. Section 5.4 improves and extends the attacks. Section 5.5 presents
cross-VM data leakage. Section 5.6 presents a new leakage method.
Section 5.7 presents a JavaScript-based attack. Section 5.8 discusses
implications. Section 5.9 concludes.

5.2. Background and Related Work

In this section, we provide relevant details regarding virtual memory, CPU
caches, Intel SGX, and transient execution attacks and defenses.

Virtual Memory In modern systems, each process has its own virtual
address space, divided into user and kernel space. Many operating systems
map physical memory directly into the kernel [29, 39], e.g., to access paging
structures. Thus, every user page is mapped at least twice: in user space
and in the kernel direct-physical map. Access to virtual-to-physical address
information requires root privileges [33]. The prefetch address-translation
attack [16, §3.3 and §5] obtains the physical address for any user-space
address via a side-channel attack.

Caches and Prefetching Modern CPUs have multiple cache levels, hiding
latency of slower memory levels. Software prefetch instructions hint the
CPU that a memory address should already be fetched into the cache
early to improve performance. Intel and AMD x86 CPUs have 5 software
prefetch* instructions.
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Prefetching attacks Gruss et al. [16] observed that software prefetches
appear to succeed on inaccessible memory. Using this effect on the kernel
direct-physical map enables the user to fetch arbitrary physical memory
into the cache. The attacker guesses the physical address for a user-space
address, tries to prefetch the corresponding address in the kernel’s direct-
physical map, and then uses Flush+Reload [74] on the user-space address.
On a cache hit, the guess was correct. Hence, the attacker can determine
the exact physical address for any virtual address, re-enabling various
mircorarchitectural attacks [31, 43, 49, 60].

Intel SGX Intel SGX is a trusted execution mechanism enabling the
execution of trusted code in a separate protected area called an enclave [22].
Although enclave memory is mapped in the virtual address space of the
host application, the hardware prevents access to the code or data of the
enclave from any source other than the enclave code itself [27]. However,
as has been shown in the past, it is possible to exploit SGX via memory
corruption [37, 53], ransomware [58], side-channel attacks [5, 54], and
transient-execution attacks [51, 55, 67, 68].

Transient Execution Modern CPUs execute instructions out of order
to improve performance and then retire in order from reorder buffers.
Another performance optimization, speculative execution, predicts control
flow and data flow for not-yet resolved conditional control- or data-flow
changes. Intel CPUs have several branch predictors [21], e.g., the Branch
History Buffer (BHB) [3, 34], Branch Target Buffer (BTB) [11, 34, 38],
Pattern History Table (PHT) [12, 34], and Return Stack Buffer (RSB) [12,
35, 42]. Instructions executed out-of-order or speculatively but not archi-
tecturally are called transient instructions [41].

These transient instructions can have measurable side effects, e.g., modifi-
cation of TLB and cache state, that can be exploited to extract secrets
in so-called transient-execution attacks [6, 26]. Spectre-type attacks [7,
18, 32, 34, 35, 42, 57] exploit misspeculation in a victim context. By
executing along the misspeculated path, the victim inadvertently leaks
information to the attacker. To mitigate Spectre-type attacks several
mitigations were developed [25], such as retpoline [24], which replaces
indirect jump instructions with ret instructions.

In Meltdown-type attacks [41], such as Foreshadow [67], an attacker
deliberately accesses memory across isolation boundaries, which is possible
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due to deferred permission checks in out-of-order execution. Foreshadow
exploits a cleared present bit in the page table-entry to leak data from
the L1 cache or the line fill buffer [51, 55]. A widely accepted mitigation
is to flush the L1 caches and line fill buffers upon context switches and to
disable hyperthreading [23].

5.3. From Address-Translation Attack to
Foreshadow-L3

In this section, we systematically analyze the properties of the address-
translation attack erroneously attributed to the software prefetch instruc-
tions [16, §3.3 and §5]. We identify the root cause to be unmitigated
misspeculation in the kernel, leading to a new Foreshadow-L3 attack that
works despite mitigations [67].

In the address-translation attack [16] the attacker tries to find a direct
physical map address p̄ for a virtual address p. The attacker flushes the
user-space address p, and prefetches the inaccessible direct physical map
address p̄. If Flush+Reload [74] determines that p was reloaded via p̄, the
physical address of p is p̄ minus the known direct-physical-map offset. We
measure the attack performance in fetches per second, i.e., how often per
second p was cached via p̄.

The prefetching component of the original attack’s proof-of-concept [19]
runs a loop, for (size_t i = 0; i < 3; ++i) { sched_yield();

prefetch(direct_phys_map_addr); }.

The compiled and disassembled code can be found in Listing 5.3.1. We
extracted the following hypotheses(H1-H5) from the original attack (cf.
Section A for quotes):

H1 the prefetch instruction (to instruct the prefetcher to prefetch);
H2 the value stored in the register used by the prefetch instruction (to

indicate which address the prefetcher should prefetch);
H3 the sched yield syscall (to give time to the prefetcher);
H4 the use of the userspace accessible bit (as kernel addresses could

otherwise not be translated in a user context);
H5 an Intel CPU – other CPU vendors are claimed to be unaffected.

We test each of the above hypotheses in this section.
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1 41 0f 18 06 prefetchnta (%r14) ; replace with nop for testing, r14 = direct

phys. addr.

2 41 0f 18 1e prefetcht2 (%r14) ; replace with nop for testing, r14 = direct

phys. addr.

Listing 5.3.1.: Disassembly of the prefetching in the address-translation attack.

5.3.1. H1: Prefetch instruction required

The first hypothesis is that the prefetch instruction is necessary for the
address-translation attack. We replace the prefetch instructions in the
original code [19] with same-size nops (cf. Listing 5.3.1). Surprisingly,
we observe no change in the number of cache fetches, i.e., we measure
60 cache fetches per second (i7-8700K, Ubuntu 18.10, kernel 4.15.0-

55), without any prefetch instruction. We also exclude the hardware
prefetcher by disabling them via the model-specific register 0x1a4 [69]
during the experiment. We still observe ≈ 60 cache fetches per second.

Documented prefetchers are not required for the address-translation
attack.

5.3.2. H2: Values in registers required

The second hypothesis is that providing the direct-physical map address
via the register is necessary. The registers that must be used vary across
kernel versions. We identified the registers r12,r13,r14 (Ubuntu 18.10,
kernel 4.18.0-17 ), r9,r10 (Debian 8, kernel 4.19.28-2 and Kali Linux,
kernel 5.3.9-1kali1 ) and rdi,rdx (Linux Mint 19, kernel 4.15.0-52).
Gruss et al. [16] used recompiled binaries that used different registers for
the kernel address (cf. Section A).

A referenced location is only fetched into the cache if the absolute virtual
address is stored in one of these registers.

We additionally verified that only the absolute virtual address causes
this effect. Any other addressing mode for the prefetch instruction does
not leak. By loading the address into most general-purpose registers,
we observe leakage across all Linux versions, even with KPTI enabled,
meaning that the KAISER technique [15] never protected against this
attack. Instead, the implementation merely changed the required registers,
hiding the effect for a specific binary-kernel combination. On an Intel
Xeon Silver 4208 CPU with in-silicon patches against Meltdown [41],
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Foreshadow [67], and ZombieLoad [55], we still observe about 30 cache
fetches per second on Ubuntu 19.04 (kernel 5.0.0-25). On Windows
10 (build 1803.17134), which has no direct physical map, we fill all
registers with a kernel address and perform the syscall SwitchToThread.
We observe ≈ 15 cache fetches per second for our kernel address.

5.3.3. H3: sched yield required

The third hypothesis is that the sched yield syscall is required. We
observe that other syscalls e.g., gettid, expose a similar number of cache
fetches. This shows that sched yield is not required and can be replaced
with other syscalls. To test whether syscalls in the main attack loop are
required, we run a address-translation attack without context switches or
interrupts and without sched yield on an isolated core. Here, we do not
observe any cache fetches (i7-8700K, kernel 4.15.0-55) when running this
attack for 10 hours. However, when inducing a large number of context
switches using interrupts, we observe about 15 cache fetches per second
if the process filling the registers gets interrupted continuously. These
hits occur during speculative execution in the interrupt handler, as we
validated manually via code changes and fencing in interrupt handlers.

We conclude that the essential part is performing syscalls or interrupts
while specific registers are filled with an attacker-chosen address.

5.3.4. H4: userspace accessible bit required

The fourth hypothesis is that user-mapped kernel pages are required, i.e.,
access is prevented via the userspace accessible bit. We constructed
an experiment where we allocate several pages of memory. We choose
cache lines A and B on different pages. In a loop, we dereference a register
pointing to A and use Flush+Reload to detect whether A was cached.
In the last loop iteration, we speculatively exchange the register value
to point to either B or the direct-physical map address of B. Hence,
both the architectural and speculative dereferences happen at the same
instruction pointer value and in the same register. With a register-value-
based hardware prefetcher, we would expect B to be cached. When
dereferencing the direct-physical-map address of B architecturally, B is
usually cached after the loop. However, when we dereference the register
with its value speculatively changed from A to either B or the direct-
physical map address of B, B is never cached after the final run. In a second
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1 ;<do_syscall_64+106> ; with retpoline

2 => 0xffffffff81802000: jmpq *%rax callq 0xffffffff8180200c

3 => 0xffffffff8180200c: mov %rax,(%rsp)

4 => 0xffffffff81802010: retq

Listing 5.3.2.: The kernel performs indirect jumps, e.g., to syscall handlers.
With retpoline [64], the kernel uses a retq instead of the indirect
jump.

experiment, we show that the effect originates from the kernel. While
prefetching direct-physical-map addresses works, user-space addresses are
only fetched when SMAP (supervisor-mode access prevention) is disabled.
Thus, the root cause of the address-translation attack adheres to SMAP.

Hence, we can conclude that the root cause is code execution in the
kernel.

5.3.5. H5: Effect only on Intel CPUs

The fifth hypothesis is that the “prefetching” effect only occurs on Intel
CPUs. We run our experiments (cf. Section 5.3.4) on an AMD Ryzen
Threadripper 1920X (Ubuntu 17.10, kernel 4.13.0-46generic), an ARM
Cortex-A57 (Ubuntu 16.04.6 LTS, kernel 4.4.38-tegra), and an IBM
Power9 (Ubuntu 18.04, kernel 4.15.0-29). On the AMD Ryzen Thread-
ripper 1920X, we achieve up to 20, on the Cortex-A57 up to 5, and on
the IBM Power9 up to 15 speculative fetches per second.

Any Spectre-susceptible CPU is also susceptible to speculative derefer-
encing.

5.3.6. Speculative Execution in the Kernel

From the previous analysis, we conclude that the leakage is due to spec-
ulative execution in the kernel. While this might not be suprising with
the knowledge of Spectre, Spectre was only discovered one year after the
original prefetch paper [16] was published. We show that the primary
leakage is caused by Spectre-BTB-SA-IP (training in same address space,
and in-place) [6].

During a syscall, the kernel performs multiple indirect jumps (cf. List-
ing 5.3.2), which are generally susceptible to Spectre-BTB-SA-IP. The
address-translation attack succeeds because misspeculated branch targets
dereference registers without sanitization. With retpoline, the kernel uses
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Figure 5.1.: The kernel speculatively dereferences the direct-physical map ad-
dress. Flush+Reload detects cache hits on the corresponding
user-space address.

a retq instead of the indirect jump to trap the speculative execution to a
fixed branch. Thus, during speculative execution, the CPU might use an
incorrect prediction from the branch-target buffer (BTB) and speculate
into the wrong syscall while registers contain attacker-chosen addresses
(cf. Figure 5.1). In the misspeculated syscall, registers containing attacker-
chosen addresses are used. On recent kernels (4.19 or newer), retpoline
eliminates the leakage. We provide a full analysis of the sched yield

gadget causing speculative dereferences in Section B. Even worse, cloud
providers still use older kernel versions (e.g., the first option on AWS
at the time of writing is Amazon Linux 2 AMI with kernel 4.14) where
retpoline does not fully eliminate the leakage. On the other hand, recent
systems such as Ice Lake do not use retpoline anymore due to improved
hardware mitigations, which unfortunately have no effect on our specula-
tive dereferencing attack. Hence, our attack remains unmitigated on many
systems, and is most importantly not mitigated by KAISER (KPTI) [15],
or LAZARUS [13] as claimed in previous works. The Spectre-BTB-SA-IP
leak from Listing 5.3.2 is only one of many, e.g., we still observe ≈ 15
speculative fetches per second on an i5-8250U (kernel 5.0.0-20) if we
eliminate this specific leak. However, any prefetch gadget [6], based on
PHT, BTB, or RSB mispredictions, can be used for an address-translation
attack [16] and thus would also re-enable Foreshadow-VMM attacks [67,
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1 movzbl (%rax,%rdi,1),%eax

2 <op> (%rcx,%rax,1),%dl

3 ; gadget in Linux kernel

4 98d4be: 0f b6 34 06 movzbl (%rsi,%rax,1),%esi

5 98d4c2: 45 01 3c b3 add %r15d,(%r11,%rsi,4)

Listing 5.3.3.: If the attacker controls three register values, it is possible to leak
arbitrary kernel memory.

70]. Concurrent work showed that there are kernel gadgets to fetch data
into the L1D cache in Xen [72] and an artificial gadget was exploited by
Stecklina for that purpose [63].

We also analyzed the interrupt handling in the Linux kernel version 4.19.0
and observed that the register values from r8-r15 are cleared but stored on
the stack and restored after the interrupt. In between, stack dereferences
in misspeculated branches can still access these values. On recent Ice Lake
processors, retpoline is replaced by enhanced IBRS. Unfortunately, this is
a security regression, re-enabling Spectre-BTB in-place attacks and, thus,
moves our focus on a set of previously overlooked gadgets, where the user
only controls certain register values in the transient domain. We measure
the performance of our attack by exploiting such a Spectre-BTB gadget
in a kernel module and evaluate it on our Ice Lake CPU. Listing 5.3.3
illustrates an eIBRS-bypassing Spectre-BTB gadget containing only two
instructions, where the attacker controls, e.g., three registers. The smallest
eIBRS-bypassing Spectre-BTB gadget we found contains only 7 bytes.

We demonstrate that on Ice Lake, this regression re-enables transient leak-
age of kernel memory like the original Spectre attack paper described [34],
i.e., measured by leaking a 1024 B secret key. We observe a completely
noise-free leakage rate of 30 B/s (n = 1000, σx̄ = 0.1429). By shifting the
byte i.e., binary searching via two consecutive cache lines, we then can
recover the exact byte value [34]. We analyzed the Linux kernel 5.4.0-48
(vmlinux binary) and looked for similar opcodes and found a gadget at
offset 0x984dbe(see Listing 5.3.3 line 3 and 4).

5.3.7. Meltdown-L3 and Foreshadow-L3

The speculative dereferencing was noticed but also misattributed to the
prefetcher in subsequent work. The Meltdown paper [41] reports that
data is fetched from L3 into L1 while mounting a Meltdown attack. Van
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Bulck et al. [67] confirmed the effect for Meltdown but did not observe
this prefetching effect for Foreshadow. Based on this observation, further
works also mentioned this effect without analyzing it thoroughly [6, 30,
47, 51]. Xiao et al. [73] state that a Meltdown-US attack causes data to
be repeatedly prefetched from L1 to L3 [73].

We used similar Meltdown-L3 setups as SpeechMiner [73] (kernel 4.4.0-
134 with boot flags nopti,nokaslr and Meltdown [41] (Ubuntu 16.10,
kernel 4.8.0, no mitigations existed back then). In our Meltdown-L3
experiment, one physical core constantly accesses a secret to ensure that
the value stays in the L3, as the L3 is shared across all physical cores. On
a different physical core, we run Meltdown on the direct-physical map. On
recent Linux kernels with full Spectre v2 mitigations implemented, we could
not reproduce the result. With the nospectre v2 flag, our Meltdown-L3
attack works again by triggering the prefetch gadget in the kernel on the
direct-physical map address. In the SpeechMiner [73] and Meltdown [41]
experiment, no mitigation (including retpoline) eliminates the leakage
fully. Without our new insights that the prefetching effect is caused
by speculative execution, it is almost inevitable to not misdesign these
experiments, inevitably leading to incomplete or incorrect observations
and conclusions on Meltdown and Foreshadow and their mitigations. We
confirmed with the authors that their experiment design was not robust to
our new insight and therefore lead to wrong conclusions. Foreshadow-L3¸
The same prefetching effect can be used to perform Foreshadow [67]. If
a secret is present in the L3 cache and the direct-physical map address
is derefenced in the hypervisor kernel, data can be fetched into the L1.
This reenables Foreshadow even with Foreshadow mitigations enabled.
We demonstrate this attack in KVM in Section 5.5.

5.4. Improving the Leakage Rate

We can leverage our insights to increase the leakage by using syscalls
other than sched yield, and executing additional syscalls to mistrain the
branch predictor.

Setup We tested our attacks on an Intel i5-8250U (Linux kernel 4.15.0-
52), an i7-8700K (Linux kernel 4.15.0-55), an ARM Cortex-A57 (Linux
kernel 4.4.38-tegra), and an AMD Threadripper 1920X (Linux kernel
4.13.0-46). As retpoline is not available on all machines, we run the tests
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without retpoline. By performing syscalls before filling the registers with
the direct-physical map address, we can mistrain the BTB, triggering the
CPU to speculatively execute this syscall. The mistraining analysis of
sched yield can be seen in the extended version of the paper [59].

Evaluation We evaluated different syscalls for branch prediction mis-
training by executing a single syscall before and after filling the registers
with the target address. We observe that effects occur for different syscalls
and both on AMD and ARM CPUs, with similar success rates (extended
version Appendix G) [59]. Alternating syscalls additionally mistrains the
branch prediction and increases the success rate, e.g., with syscalls like
stat, sendto, or geteuid. However, not every additional syscall increases
the number of cache fetches. On recent Linux kernels (version 5), we
observe that the number of speculative cache fetches decreases, due to
a change in syscall handling. Our results show that the pipe syscall
much more reliably triggers speculative dereferencing (≥99.9 %), but the
execution time of sched yield is much lower and thus despite the lower
success rate (around 66.4 % in the most basic case) it yields a higher
attack performance.

Capacity Measurement in a Cross-Core Covert Channel We measure
the capacity of our attack in a covert channel by using the speculative
dereferencing effect (‘1’-bit) or not (‘0’-bit). The receiver uses Flush+
Reload to measure whether the cache state of cache line dereferenced in
the kernel. We evaluated the covert channel on random data and across
physical CPU cores. Our test system was equipped with an Intel i7-6500U
CPU Linux 4.15.0-52 with the nospectre v2 boot flag. We achieved
the highest capacity at a transmission rate of 10 bit/s. At this rate, the
standard error is, on average, 0.1 %. This result is comparable to related
work in similar scenarios [49, 71]. To achieve an error-free transmission,
error-correction techniques [43] can be used. I/O interrupts, i.e., syncing
the NVMe device, create additional speculative dereferences and can thus
further improve the capacity.

5.5. Speculative Dereferences and Virtual Machines

In this section, we examine speculative dereferencing in virtual machines.
We demonstrate a successful end-to-end attack using interrupts from a
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Figure 5.2.: If a guest-chosen address is speculatively fetched into the cache
during a hypercall or interrupt and not flushed before the virtual
machine is resumed, the attacker can perform a Foreshadow attack
to leak the fetched data.

virtual-machine guest running under KVM on a Linux host [36]. We
leak data (e.g., cryptographic keys) from other virtual machines and the
hypervisor, like the original Foreshadow attack. We do not observe any
speculative dereferencing of guest-controlled registers in Microsoft’s Hyper-
V HyperClear Foreshadow mitigation which additionally uses retpoline,
or on more recent kernel versions with retpoline. We provide a thorough
analysis of this negative result. However, the attack succeeds even with the
recommended Foreshadow mitigations enabled and with kernel versions
before 4.18 (e.g., as used by default on AWS Amazon Linux 2 AMI) with
all default mitigations enabled, i.e., including retpoline. We investigate
whether speculative dereferencing also exists in hypercalls. The attacker
targets a specific host-memory location where the host virtual address
and physical address are known but inaccessible.

Foreshadow Attack on Virtualization Software If an address from the
host is speculatively fetched into the L1 cache on a hypercall from the
guest, it has a similar speculative-dereferencing effect. With the speculative
memory access in the kernel, we can fetch arbitrary memory from L2,
L3, or DRAM into the L1 cache. Consequently, Foreshadow can be used
on arbitrary memory addresses provided the L1TF mitigations in use
do not flush the entire L1 data cache [63, 65, 72]. Figure 5.2 illustrates
the attack using hypercalls or interrupts and Foreshadow. The attacking
guest loads a host virtual address into the registers used as hypercall
parameters and then performs hypercalls. If there is a prefetching gadget
in the hypercall handler and the CPU misspeculates into this gadget, the
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host virtual address is fetched into the cache. The attacker then performs
a Foreshadow attack and leaks the value from the loaded virtual address.

5.5.1. Foreshadow on Patched Linux KVM

Concurrent work showed that prefetching gadgets in the kernel, in com-
bination with L1TF, can be exploited on Xen and KVM [63, 72]. The
default setting on Ubuntu 19.04 (kernel 5.0.0-20) is to only conditionally
flush the L1 data cache upon VM entry via KVM [65], which is also
the case for Kali Linux (kernel 5.3.9-1kali1). The L1 data cache is
only flushed in nested VM entry scenarios or in situations where data
from the host might be leaked. Since Linux kernel 4.9.81, Linux’s KVM
implementation clears all guest clobbered registers to prevent specula-
tive dereferencing [10]. In our attack, the guest fills all general-purpose
registers with direct-physical-map addresses from the host.

End-To-End Foreshadow Attack via Interrupts In Section 5.3.3, we
observed that context switches triggered by interrupts can also cause
speculative cache fetches. We use the example from Section 5.3.3 to verify
whether the “prefetching” effect can also be exploited from a virtualized
environment. In this setup, we virtualize Linux buildroot (kernel 4.16.18)
on a Kali Linux host (kernel 5.3.9-1kali1) using qemu (4.2.0) with the
KVM backend. In our experiment, the guest constantly fills a register
with a direct-physical-map address and performs the sched yield syscall.
We verify with Flush+Reload in a loop on the corresponding host virtual
address that the address is indeed cached. Hence, we can successfully fetch
arbitrary hypervisor addresses into the L1 cache on kernel versions before
the patch, i.e., with Foreshadow mitigations but incomplete Spectre-BTB
mitigations. We observe about 25 speculative cache fetches per minute
using NVMe interrupts on our Debian machine. The attacker, running as
a guest, can use this gadget to prefetch data into the L1. Since data is
now located in the L1, this reenables a Foreshadow attack [67], allowing
guest-to-host memory reads. 25 fetches per minute means that we can
theoretically leak up to 64 ⋅ 25 = 1600 bytes per minute (or 26.7 bytes per
second) with a Foreshadow attack despite mitigations in place. However,
this requires a sophisticated attacker who avoids context switches once
the target cache line is cached. We develop an end-to-end Foreshadow-
L3 exploit that works despite enabled Foreshadow mitigations. In this
attack the host constantly performs encryptions using a secret key on a
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physical core, which ensures it remains in the shared L3 cache. We assign
one isolated physical core, consisting of two hyperthreads, to our virtual
machine. In the virtual machine, the attacker fills all registers on one
logical core (hyperthread) and performs the Foreshadow attack on the
other logical core. Note that this is different from the original Foreshadow
attack where one hyperthread is controlled by the attacker and the sibling
hyperthread is used by the victim. Our scenario is more realistic, as the
attacker controls both hyperthreads, i.e., both hyperthreads are in the
same trust domain. With this proof-of-concept attack implementation,
we are able to leak 7 bytes per minute successfully

1
. Note that this can

be optimized further, as the current proof-of-concept produces context
switches regardless of whether the cache line is cached or not. Our attack
clearly shows that the recommended Foreshadow mitigations alone are not
sufficient to mitigate Foreshadow attacks, and retpoline must be enabled
to fully mitigate our Foreshadow-L3 attack.

No Prefetching gadget in Hypercalls in KVM We track the register
values in hypercalls and validate whether the register values from the
guest system are speculatively fetched into the cache. We neither observe
that the direct-physical-map address is still located in the registers nor
that it is speculatively fetched into the cache. However, as was shown in
concurrent work [63, 72], prefetch gadgets exist in the kernel that can be
exploited to fetch data into the cache, and these gadgets can be exploited
using Foreshadow.

5.5.2. Negative Result: Foreshadow on Hyper-V HyperClear

We examined whether the same attack also works on Windows 10 (build
1803.17134), which includes the latest patch for Foreshadow. As on Linux,
we disabled retpoline and tried to fetch hypervisor addresses from guest
systems into the cache. Microsoft’s Hyper-V HyperClear Mitigation [45]
for Foreshadow claims to only flush the L1 data cache when switching
between virtual cores. Hence, it should be susceptible to the same basic
attack we described at the beginning of this section. For our experiment,
the attacker passes a known virtual address of a secret variable from the
host operating system for all parameters of a hypercall. However, we could
not find any exploitable timing difference after switching from the guest

1
Demonstration video can be found here: https://streamable.com/8ke5ub



5.6. Leaking Values from SGX Registers 87

to the hypervisor. The extended version discusses the negative result in
Appendix F [59].

5.6. Leaking Values from SGX Registers

In this section, we present a novel method, Dereference Trap, to leak
register contents via speculative register dereference. Leaking the values
of registers is useful, e.g., to extract parts of keys from cryptographic
operations.

5.6.1. Dereference Trap

The setup for Dereference Trap is similar as in Section 5.3.6. We exploit
transient code paths inside an SGX enclave that speculatively dereference
a register containing a secret value. Such a gadget is easily introduced in
an enclave, e.g., when using polymorphism in C++. The extended version
contains a minimal example of such a gadget (Appendix C, Listing 5) [59].
However, there are also many different causes for such gadgets [24], e.g.,
function pointers or (compiler-generated) jump tables. The basic idea
of Dereference Trap is to ensure that the entire virtual address space
of the application is mapped. Thus, if a register containing a secret is
speculatively dereferenced, the corresponding virtual address is cached.
The attacker can detect which virtual address is cached and infer the
secret. However, it is infeasible to back every virtual address with unique
physical pages and mount Flush+Reload on every cache line, as that takes
2 days on a 4 GHz CPU [53].

Instead of mapping every page in the virtual address space to its own
physical pages, we only map 2 physical pages p1 and p2, as illustrated in
Figure 5.3. By leveraging shared memory, we can map one physical page
multiple times into the virtual address space. The maximum number of
mappings per page is 2

31−1, which makes it possible to map 1/16
th

of the
user-accessible virtual address space. If we only consider 32-bit secrets, i.e.,
secrets which are stored in the lower half of 64-bit registers, 2

20
mappings

are sufficient. Out of these, the first 2
10

virtual addresses map to physical
page p1 and the second 2

10
addresses map to page p2. Consequently the

majority of 32-bit values are now valid addresses that either map to p1
or p2. Thus, after a 32-bit secret is speculatively dereferenced inside the
enclave, the attacker only needs to probe the 64 cache lines of each of the
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Flush+Reload

Physical Page p1 Physical Page p2

v0 ... vn
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−1 vn
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Figure 5.3.: Leaking the value of an x86 general-purpose register using Deref-
erence Trap and Flush+Reload on two different physical addresses.
v0 to vn−1 represent the memory mappings on one of the shared
memory regions.

two physical pages. A cache hit reveals the most-significant bit (bit 31) of
the secret as well as bits 6 to 11, which define the cache-line offset on the
page. To learn the remaining bits 12 to 30, we continue in a fashion akin
to binary-search. We unmap all mappings to p1 and p2 and create half as
many mappings as before. Again, half of the new mappings map to p1
and half of the new mappings map to p2. From a cache hit in this setup,
we can again learn one bit of the secret. We can repeat these steps until
all bits from bit 6 to 31 of the secret are known. As the granularity of
Flush+Reload is one cache line, we cannot leak the least-significant 6 bits
of the secret. On our test system, we recovered a 32-bit value (without
the least-significant 6 bits) stored in a 64-bit register within 15 minutes
with Dereference Trap.
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5.6.2. Generalization of Dereference Trap

Dereference Trap is a generic technique that applies to any scenario where
the attacker can set up the hardware and address space accordingly.
Dereference Trap applies to all Spectre variants. Many in-place Spectre-v1
gadgets that are not the typical encoding array gadget are still entirely
unprotected with no plans to change this. For instance, Intel systems
before Haswell and AMD systems before Zen do not support SMAP, and
more recent systems may have SMAP disabled. On these systems, we can
also mmap memory regions and the kernel will dereference 32-bit values
misinterpreted as pointers (into user space). Using this technique the
attacker can reliably leak a 32-bit secret which is speculatively dereferenced
by the kernel. Cryptographic implementations often store keys in the
lower 32 bits of 64bit registers (i.e., specderef:OpenSSL AES round key
u32 *rk) [62]. Hence, these implementations might be susceptible to
Dereference Trap. We evaluated the same experiment on an Intel i5-
8250U, ARM Cortex-A57, and AMD ThreadRipper 1920X with the same
result of 15 minutes to recover a 32-bit secret (without the least-significant
6 bits). Thus, retpoline and SMAP must remain enabled to mitigate
attacks like Dereference Trap.

5.7. Leaking Physical Addresses from JavaScript
using WebAssembly

In this section, we present an attack that leaks the physical address (cache-
line granularity) of a JavaScript variable. This shows that the “prefetching”
effect is much simpler than described in the original paper [16], i.e., it
does not require native code execution. The only requirement for the
environment is that it can keep a 64-bit register filled with an attacker-
controlled 64-bit value. In contrast to the original paper’s attempt to
use native code in browser, we create a JavaScript-based attack to leak
physical addresses from Javascript variables and evaluate its performance
in Firefox. We demonstrate that it is possible to fill 64-bit registers with
an attacker-controlled value via WebAssembly.

Attack Setup JavaScript encodes numbers as 53-bit double-precision
floating-point values [46]. It is not possible to store a full 64-bit value into
a register with vanilla JavaScript. Hence, we leverage WebAssembly, a
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binary instruction format which is precompiled for the JavaScript engine
and not further optimized [66]. On our test system (i7-8550U, Debian 8,
kernel5.3.9-1kali1) registers r9 and r10 are speculatively dereferenced
in the kernel. Hence, we fill these registers with a guessed direct-physical-
map address of a variable. The WebAssembly method load pointer

(Appendix F [59]) takes two 32-bit values that are combined into a 64-
bit value and populated into as many registers as possible. To trigger
interrupts, we use web requests, as shown by Lipp et al. [40]. Our attack
leaks the direct-physical-map address of a JavaScript variable. The attack
works analogously to the native-code address-translation attack [16].

1. Guess a physical address p for the variable and compute the corre-
sponding direct-physical map address d(p).

2. Load d(p) into the required registers (load pointer) in an endless
loop, e.g., using endless-loop slicing [40].

3. The kernel fetches d(p) into the cache when interrupted.
4. Use Evict+Reload on the target variable. On a cache hit, the physical

address guess p from Step 1 was correct. Otherwise, continue with the
next guess.

Attack from within Browsers We mount an attack in an unmodified
Firefox 76.0 by injecting interrupts via web requests. We observe up to
2 speculative fetches per hour. If the logical core running the code is
constantly interrupted, e.g., due to disk I/O, we achieve up to 1 speculative
fetch per minute. As this attack leaks parts of the physical and virtual
address, it can be used to implement various microarchitectural attacks [14,
17, 34, 48, 49, 52, 56]. Hence, the address-translation attack is possible
with JavaScript and WebAssembly, without requiring the NaCl sandbox
as in the original paper [16]. Upcoming JavaScript extensions expose
syscalls to JavaScript [8]. Hence, as the second part of our evaluation,
we investigate whether a syscall-based attack would also yield the same
performance as in native code. To simulate the extension, we expose the
sched yield syscall to JavaScript. We observe the same performance of
20 speculative fetches per second with the syscall function.

Limitations of the Attack We conclude that the bottleneck of this attack
is triggering syscalls. In particular, there is currently no way to directly
perform a single syscall via Javascript in browsers without high overhead.
We traced the syscalls of Firefox using strace. We observed that syscalls
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such as sched yield, getpid, stat, sendto are commonly performed
upon window events, e.g., opening and closing pop-ups or reading and
writing events on the JavaScript console. However, the registers r9 and
r10 get overwritten before the syscall is performed. Thus, whether the
registers are speculatively dereferenced while still containing the attacker-
chosen values strongly depends on the engine’s register allocation and on
other syscalls performed. As Jangda et al. [28] stated, not all registers are
used in JIT-generated native code [28].

5.8. Discussion

The “prefetching” effect was first observed by Gruss et al. [16] in 2016.
In May 2017, Jann Horn discovered that speculative execution can be
exploited to leak arbitrary data, later on published in the Spectre [34]
paper. Our results indicate that the address-translation attack was the
first inadvertent exploitation of speculative execution, albeit in a much
weaker form where only metadata, i.e., information about KASLR, is
leaked rather than real data as in a full Spectre attack. Even before the
address-translation attack, speculative execution was well known [50] and
documented [22] to cause cache hits on addresses that are not architec-
turally accessed. Currently, the address-translation attack and our variants
are mitigated on both Linux and Windows using the retpoline technique to
avoid indirect branches. Another possibility upon a syscall is to save user-
space register values to memory, clear the registers to prevent speculative
dereferencing, and later restore the user-space values after execution of
the syscall. However, as has been observed in the interrupt handler, there
might still be some speculative cache accesses on values from the stack.
The retpoline mitigation for Spectre-BTB introduces a large overhead for
indirect branches. The performance overhead can in some cases be up
to 50 % [61]. This is particularly problematic in large scale systems, e.g.,
cloud data centers, that have to compensate for the performance loss and
increased energy consumption. Furthermore, retpoline breaks CET and
CFI technologies and might thus also be disabled [4]. As an alternative,
randpoline [4] could be used to replace the mitigation with a probabilistic
one, again with an effect on Foreshadow mitigations. And indeed, miti-
gating memory corruption vulnerabilities may be more important than
mitigating Foreshadow in certain use cases. Cloud computing concepts
that do not rely on traditional isolation boundaries are already being
explored [1, 9, 20, 44]. On current CPUs, retpoline must remain enabled,
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which is not the default in many cases. Other Spectre-BTB mitigations,
including enhanced IBRS, do not mitigate our attack. On newer kernels
for ARM Cortex-A CPUs, the branch prediction results can be discarded,
and on certain devices branch prediction can be entirely disabled [2]. Our
results suggest that these mechanisms are required for context switches or
interrupt handling. Additionally, the L1TF mitigations must be applied
on affected CPUs to prevent Foreshadow. Otherwise, we can still fetch
arbitrary hypervisor addresses into the cache. Finally, our attacks also
show that SGX enclaves must be compiled with the retpoline flag. Even
with LVI mitigations, this is currently not the default setting, and thus
all SGX enclaves are potentially susceptible to Dereference Trap.

5.9. Conclusion

We showed that the underlying root cause of prefetching effects was
misattributed in previous works [6, 15, 30, 41, 47, 51, 67] and speculative
dereferencing of a user-space register in the kernel actually causes the
leakage. As a result, we were able to mount a Foreshadow (L1TF) attack
on data from the L3 cache, even with the latest mitigations enabled.
Furthermore, we were able to improve the performance of the original
attack, apply it to AMD, ARM, and IBM and exploit the effect via
JavaScript in browsers. Our novel technique, Dereference Trap, leaks the
values of registers used in SGX (or privileged contexts) via speculative
dereferencing.
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Appendix

A. Extracting Hypotheses from Previous Works

The hypotheses are extracted from previous works as detailed in this
section. The footnotes for each hypothesis provide the exact part of the
previous work that we reference.

H1 the prefetch instruction (to instruct the prefetcher to prefetch);
1

H2 the value stored in the register used by the prefetch instruction (to
indicate which address the prefetcher should prefetch);

2

H3 the sched yield syscall (to give time to the prefetcher);
3

H4 the use of the userspace accessible bit (as kernel addresses could
otherwise not be translated in a user context);

4

H5 an Intel CPU – the “prefetching” effect only occurs on Intel CPUs,
and other CPU vendors are not affected.

5

The original paper also describes that “delays were introduced to lower the
pressure on the prefetcher” [16]. In fact, this was done via recompilation.
Note that recompilation with additional code inserted may have side effects
such as a different register allocation, which we find to be an important
influence factor to the attack.

B. Actual Spectre V2 gadget in Linux kernel

We analyzed the Linux kernel 4.16.18 and used the GNU debugger(GDB)
to debug our kernel. As our target syscall we analyzed the path of
the sched yield syscall. We used the same experiment, which fills all
general-purpose registers with the corresponding DPM address, perform

1
“Our attacks are based on weaknesses in the hardware design of prefetch instruc-

tions” [16].
2
“2. Prefetch (inaccessible) address p̄. 3. Reload p. [...] the prefetch of p̄ in step 2

leads to a cache hit in step 3 with a high probability.” [16] with emphasis added.
3
“[...] delays were introduced to lower the pressure on the prefetcher.” [16]. These

delays were implemented using a different number of sched yield system calls, as can
also be seen in the original attack code [19].

4
“Prefetch can fetch inaccessible privileged memory into various caches on Intel

x86.” [16] and corresponding NaCl results.
5
“[...] we were not able to build an address-translation oracle on [ARM] Android.

As the prefetch instructions do not prefetch kernel addresses [...]” [16] describing why it
does not work on ARM-based Android devices.



94 Chapter 5. Speculative Dereferencing of Registers

sched yield and verify the speculative dereference with Flush+Reload.
We repeat this experiment 10 000 000 times. We analyzed each indirect
branch in this code path and replaced the indirect call/jump with a
retpolined version. Furthermore, we analyzed all general-purpose regis-
ters and traced their content if the DPM-address is still valid in some
registers. By systematically retpolining the indirect branches, we ob-
served that the indirect call current->sched class->yield task(rq);

in the function sys sched yield causes the main leakage. We set a
breakpoint to this function and observed that four general-purpose regis-
ters (%rcx,%rsi,%r8,%r9) still contain the kernel address we set in our
experiment.

In the function put prev task fair, the %rsi register is dereferenced.
To check whether this dereference cause the leakage, we add an lfence

instruction at the beginning of the function. We run the same experiment
again and observe almost no cache fetches on our address. The %rsi

register is dereferenced in line 48

C. Mistraining BTB for sched yield

We evaluate the mistraining of the BTB by calling different syscalls, fill all
general-purpose registers with direct-physical map address and call sched -

yield. Our test system was equipped with Ubuntu 18.04 (kernel 4.4.143-
generic) and an Intel i7-6700K. We repeated the experiment by iterating
over various syscalls with different parameters (valid parameters,NULL as
parameters) 10 times with 200 000 repetitions. Table 5.1 lists the best 15
syscalls to mistrain the BTB when sched yield is performed afterwards. On
this kernel version it appears that the read and getcwd syscalls mistraing
the BTB best if sched yield is called after the register filling.

D. Speculative Dereference Gadget in SGX

Listing 5.9.1 shows a minimal example of introducing a speculative-
dereference gadget that can be used for Dereference Trap (cf. Section 5.6).
The virtual functions are implemented using vtables for which the compiler
emits an indirect call in Section D. The branch predictor for this indirect
call learns the last call target. Thus, if the call target changes because
the type of the object is different, speculative execution still executes the
function of the last object with the data of the current object.
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Table 5.1.: Table of syscalls which achieve the highest numbers of cache fetches,
when calling sched yield after the register filling.

Syscall Parameters Avg. # cache fetches

readv readv(0,NULL,0); 13766.3
getcwd syscall(79,NULL,0); 7344.7
getcwd getcwd(NULL,0); 6646.9
readv syscall(19,0,NULL,0); 5541.4
mount syscall(165,s cbuf,s cbuf,s cbuf,s ulong,(void*)s cbuf); 4831.6
getpeername syscall(52,0,NULL,NULL); 4600.0
getcwd syscall(79,s cbuf,s ulong); 4365.8
bind syscall(49,0,NULL,0); 3680.6
getcwd getcwd(s cbuf,s ulong); 3619.3
getpeername syscall(52,s fd,&s ssockaddr,&s int); 3589.3
connect syscall(42,s fd,&s ssockaddr,s int); 2951.2
getpeername getpeername(0,NULL,NULL); 2822.4
connect syscall(42,0,NULL,0); 2776.4
getsockname syscall(51,0,NULL,NULL); 2623.4
connect connect(0,NULL,0); 2541.5

1 class Object {

2 public: virtual void print() = 0;

3 };

4 class Dummy : public Object {

5 private: char* data;

6 public: Dummy() { data = "TEST"; }

7 virtual void print() { puts(data); }

8 };

9 class Secret : public Object {

10 private: size_t secret;

11 public: Secret() { secret = 0x12300000; }

12 virtual void print() { }

13 };

14 void printObject(Object* o) { o->print(); }

Listing 5.9.1.: Speculative type confusion which leaks the secret of Secret

class instances using Dereference Trap.

In this code, calling printObject first with an instance of Dummy mistrains
the branch predictor to call Dummy::print, dereferencing the first member
of the class. A subsequent call to printObject with an instance of
Secret leads to speculative execution of Dummy::print. However, the
dereferenced member is now the secret (Section D) of the Secret class.
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The speculative type confusion in such a code construct leads to a spec-
ulative dereference of a value which would never be dereferenced archi-
tecturally. We can leak this speculatively dereferenced value using the
Dereference Trap attack.

E. WebAssembly Register Filling

1 extern void yield_wrapper();

2 uint64_t G1 = 5, G2 = 5, G3 = 5, G4 = 5, G5 = 5, value = 0;

3 void spec_fetch() {

4 for (uint64_t i = G1+5; i > G1; i--)

5 for (uint64_t k = G3+5; k > G3; k--)

6 for (uint64_t j = G2-5; k < G2; j++)

7 for(uint64_t l = G4; i < G4;l++)

8 for(uint64_t m = G5-5;m<G5;m++)

9 value = l + j + k + i;

10 yield_wrapper();

11 }

12 int load_pointer(int high, int low) {

13 uint64_t a = (((uint64_t)high) << 32ull) | ((uint64_t)(unsigned

int)low);

14 G1 = a;

15 G2 = a;

16 G3 = a;

17 G4 = a;

18 G5 = a;

19 spec_fetch();

20 return a;

21 }

22 int main() {

23 load_pointer(0x12345678,0x9abcdef0);

24 }

Listing 5.9.2.: WebAssembly code to speculatively fetch an address from the
kernel direct-physical map into the cache. We combine this
with a state-of-the-art Evict+Reload loop in JavaScript to de-
termine whether the guess for the direct-physical map address
was correct.

The WebAssembly method load pointer of Listing 5.9.2 takes two 32-bit
JavaScript values as input parameters. These two parameters are loaded



5.9. Conclusion 97

60 80 100 120 140 160 180 200 220 240 260
0

2,000

4,000

Response time [CPU cycles]

A
m

o
u

n
t L1 hit

Cache miss
Hit after hypercall

Figure 5.4.: Timings of a cached and uncached variable and the access time
after a hypercall in a Ubuntu VM on Hyper-V.

into a 64-bit integer variable and stored into multiple global variables.
The global variables are then used as loop exit conditions in the separate
loops. To fill as many registers as possible with the direct-physical-map
address, we create data dependencies within the loop conditions. In the
spec fetch function, the registers are filled inside the loop. After the loop,
the JavaScript function yield wrapper is called. This tries to trigger
any syscall or interrupt in the browser by calling JavaScript functions
which may incur syscalls or interrupts. Lipp et al. [40] reported that web
requests from JavaScript trigger interrupts from within the browser.

F. No Foreshadow on Hyper-V HyperClear

We set up a Hyper-V virtual machine with a Ubuntu 18.04 guest (kernel
5.0.0-20). We access an address to load it into the cache and perform
a hypercall before accessing the variable and measuring the access time.
Since hypercalls are performed from a privileged mode, we developed
a kernel module for our Linux guest machine which performs our own
malicious hypercalls. We observe a timing difference (see Figure 5.4)
between a memory access which hits in the L1 cache (dotted), a memory
access after a hypercall (grid pattern), and an uncached memory access
(crosshatch dots). We observe that after each hypercall, the access times
are ≈ 20 cycles slower. This indicates that the guest addresses are flushed
from the L1 data cache. In addition, we create a second experiment where
we load a virtual address from a process running on the host into several
registers when performing a hypercall from the guest. On the host system,
we perform Flush+Reload on the virtual address in a loop and verify
whether the virtual address is fetched into the cache. We do not observe
any cache hits on the host process when performing hypercalls from the
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guest system. Thus we conclude that either the L1 cache is always flushed,
contradicting the documentation, or creating a situation where the L1
cache is not flushed requires a more elaborate attack setup. However, we
believe that speculative dereferencing is the reason why Microsoft adopted
the retpoline mitigation despite having other Spectre-BTB mitigations
already in place.

G. Evaluation Framework for Speculative Dereferencing in
Syscalls

Table 5.2.: F1-Scores for speculative cache fetches with different syscalls on
different CPU architectures.
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sched yield

None 66.40 % 91.49 % 99.29 % 76.61 %
send-to 56.42 % 4.60 % 52.94 % 44.88 %
geteuid 46.62 % 1.90 % 63.94 % 48.82 %
stat 77.37 % 57.44 % 69.28 % 63.57 %

pipe

None 100.00 % 99.35 % 100.00 % 100.00 %
send-to 99.90 % 99.60 % 100.00 % 100.00 %
geteuid 99.90 % 99.61 % 100.00 % 100.00 %
stat 99.90 % 99.55 % 99.90 % 100.00 %

read

None 10.42 % 0.09 % 8.50 % 57.95 %
send-to 14.47 % 21.26 % 1.90 % 78.86 %
geteuid 15.32 % 56.73 % 2.35 % 73.73 %
stat 28.32 % 24.07 % 9.70 % 23.32 %

write

None 7.69 % 91.24 % 76.46 % 58.95 %
send-to 14.29 % 9.88 % 11.00 % 45.68 %
geteuid 15.49 % 32.21 % 52.94 % 49.47 %
stat 9.16 % 9.70 % 52.83 % 12.03 %

nanosleep

None 21.20 % 27.43 % 52.61 % 87.40 %
send-to 46.59 % 13.43 % 76.23 % 82.83 %
geteuid 29.93 % 96.05 % 89.62 % 69.63 %
stat 59.84 % 99.14 % 89.68 % 77.67 %
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We created a framework that runs the experiment from Section 5.3.4 with
20 different syscalls (after filling the registers) and computes the F1-score.
We perform different syscalls before filling the registers to mistrain the
branch prediction. One direct-physical-map address has a corresponding
mapping to a virtual address and should trigger speculative fetches into
the cache. The other direct-physical-map address should not produce
any cache hits on the same virtual address. If there is a cache hit on the
correct virtual address, we count it as a true positive. Conversely, if there
is no hit when there should have been one, we count it as a false negative.
On the second address, we count the false positives and true negatives.
For syscalls with parameters, e.g., mmap, we set the value of all parameters
to the direct-physical-map address, i.e., mmap(addr, addr, addr, addr,

addr, addr). We repeat this experiment 1000 times for each syscall on
each system and compute the F1-Score. Table 5.2 lists the results of our
evalution. As can be seen the pipe syscall achieves the highest F1-Score.
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Abstract

In the quest for efficiency and performance, edge-computing providers
replace process isolation with sandboxes, to support a high number of
tenants per machine. While secure against software vulnerabilities, mi-
croarchitectural attacks can bypass these sandboxes.

In this paper, we present a Spectre attack leaking secrets from co-located
tenants in edge computing. Our remote Spectre attack, using amplification
techniques and a remote timing server, leaks 2 bit/min. This motivates our
main contribution, DyPrIs, a scalable process-isolation mechanism that
only isolates suspicious worker scripts following a lightweight detection
mechanism. In the worst case, DyPrIs boils down to process isolation. Our
proof-of-concept implementation augments real-world cloud infrastructure
used in production at large scale, Cloudflare Workers. With a false-
positive rate of only 0.61 %, we demonstrate that DyPrIs outperforms strict
process isolation while statistically maintaining its security guarantees,
fully mitigating cross-tenant Spectre attacks.

6.1. Introduction

With the recent discovery of transient-execution attacks [7], such as
Spectre [34] or Meltdown [37], attackers even leak data, not only meta-
data. As most transient-execution attacks work across logical CPUs, i.e.,
hyperthreads, many cloud providers do not assign logical CPUs to different
tenants. With the introduction of edge computing [2, 10], where resources
are dynamically provided on a machine that is close to the customer,
virtualization-based security was replaced by more efficient solutions.
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Security
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1 script in 1 process (site isolation)

all scripts in 1 process (no mitigation)

Figure 6.1.: Strict process isolation choses the security and performance trade-
off via the number of scripts inside one process (dashed line).
DyPrIs improves this trade-off while never being worse than strict
process isolation.

Cloud providers either rely on strict process isolation [2, 42], i.e., one
process per tenant, or language-level isolation [10, 16, 17], i.e., code is
written in a sandboxed language such as JavaScript. While language-level
isolation has the least overhead [11], it does not protect against Spectre
within the same process [30, 34, 41, 57], necessitating process or site
isolation [48]. To avoid these costly countermeasures, Cloudflare Workers
rely on a modified JavaScript sandbox [10] that disables all known timers
and primitives that can be abused to build timers [22, 54]. A similar
design using language-level isolation WebAssembly is used by Fastly [17].
As Cloudflare is one of the top three edge computing providers, with
millions of requests daily, this raises the following scientific question:

Can edge computing without strict process isolation, as is already deployed
and widely used today, offer the same security levels with respect to mi-
croarchitectural attacks as edge computing with strictly isolated processes?

This paper has an offensive and a defensive contribution: First, we demon-
strate that it is possible to steal secrets on Cloudflare Workers with
2 bit/min using an amplified Spectre attack [58] relying on an external
time server. This proof-of-concept attack shows that language-level isola-
tion is insufficient.

Second, we propose, DyPrIs (Dynamic Process Isolation), a technique that
relies on a probabilistic Spectre detection and process-isolates suspicious
workloads. DyPrIs is a middle ground between the two extremes of strict
process isolation and language-level isolation. Hence, DyPrIs keeps the
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performance benefits of language-level isolation for the majority of benign
workloads and provides the security guarantees of process isolation against
malicious workloads. Even if every workload was classified as Spectre,
DyPrIs only boils down to strict process isolation with a the small overhead
of 2 % for the detection, but on average, it results in far higher performance
(cf. Figure 6.1).

Our detection uses hardware performance counters (HPC) for mispre-
dicted and retired branches. We show that HPC usage, as suggested in
prior work [32, 43, 46, 70] has too much overhead for efficiency-driven
edge systems. However, we demonstrate that even with a limited set of
performance counters, we detect running Spectre attacks with a small
performance overhead of 2 %.

We evaluated DyPrIs in a production environment in the cloud. Our
result is a false-positive rate of 0.61 %, while detecting all attack attempts
with all state-of-the-art techniques. DyPrIs blocks our attack without
interrupting any of our own or other workloads.

Contributions. The main contributions of this work are:

1. We demonstrate a remote Spectre attack on the restricted Cloudflare
Workers, showing that current mitigations are insufficient.

2. We propose a novel, low-overhead probabilistic detection for Spectre
attacks.

3. We introduce DyPrIs, a technique with, on average, lower overhead
than state-of-the-art strict process isolation.

6.2. Background and Related Work

In modern processors, instructions are divided into multiple micro-operations
(µOPs) that are executed out of order. To improve the performance of
branch instructions, CPUs leverage speculative execution. For example,
the branch prediction unit (BPU) tries to predict whether a branch is
taken or not using different data structures, e.g., the Pattern History Table
(PHT) [34]. If the prediction was correct, the results of the execution are
retired. Otherwise, the speculatively executed instructions are discarded,
and the correct code path is executed. Mistakenly executed instructions
are called transient instructions [7, 37]. They still have an effect on the
microarchitecture, e.g., measurable timing differences in the cache that
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can be extracted with cache attacks [7, 34, 37]. Cache attacks are even
possible in JavaScript [44].

Spectre attacks [34] exploit speculative execution. Spectre-PHT [7] (also
known as Spectre V1) exploits the Pattern History Table, which predicts
the outcome of a conditional branch [34]. A typical Spectre-PHT gadget is
a bounds check, e.g., if (x < array1 size) y = array2[array1[x] *

4096];. The attacker controls the index x, which is bounds-checked. By
mistraining the branch prediction with in-bounds values, speculation fol-
lows the in-bounds path with out-of-bounds values, allowing out-of-bounds
reads. Spectre variants exploit different prediction mechanisms, e.g.,
the Branch Target Buffer, memory disambiguation, or the Return-Stack
Buffer [29, 34, 35, 38] and have been demonstrated over the network [55]
and in JavaScript [34, 41, 57].

Many cache side-channel defenses have been proposed, e.g., focusing on
detection using HPCs [8, 28, 32, 46, 66, 67, 70, 71]. To detect Spectre-
type attacks, static code analysis and patching, taint tracking, symbolic
execution, and detection via HPCs were proposed [13, 25–27, 40, 43, 65].
However, these proposals focus on attack detection but do not propose
and evaluate mechanisms to respond to detected attacks. Detection
methods suffer from false positives but terminating a detected attack is
not acceptable for Cloudflare Workers.

Cloudflare Workers is an edge computing service to intercept web requests
and modify their content using JavaScript, handling millions of HTTP
requests per second across tens of thousands of web sites. Cloudflare
Workers support multiple thousand workers from up to 2000 tenants run-
ning inside the same process. Each worker is single-threaded and stateless.
This design leads to a high-performant solution based on language-level
isolation. To impede microarchitectural attacks, Cloudflare Workers re-
stricts the available JavaScript timing functions to only update after a
request is performed. Additionally, JavaScript worker threads are disabled
to prevent counting threads [22, 34, 54].

6.3. Remote Spectre Attacks on Cloudflare Workers

In this section, we show that the single-address-space design of Cloudflare
Workers enables remote Spectre attacks. First, we define the Spectre
building blocks and overview how a remote adversary can mount a Spectre
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if(x < len) {

b = bit arr[x] <<< b idx

v = oracle[(b & 1) * 4096]

}

Figure 6.2.: Overview of the Cloudflare Workers remote Spectre attack.

attack. Since there is no local timing primitive, a common requirement
for microarchitectural attacks [18, 53], we have to resort to a remote
timing primitive. Our proof-of-concept implementation running on Cloud-
flare Workers leaks 2 bit/min, even if address space layout randomization
(ASLR) is active.

6.3.1. Threat Model & Attack Overview

In our threat model, the attacker can run Cloudflare Workers executing
JavaScript code but no native code. Furthermore, the attacker controls a
remote server to record high-resolution timestamps, e.g., using rdtsc,and
a low-latency network connection. We also assume a powerful attacker
with a worker co-located with the victim worker, e.g., by spawning multiple
Cloudflare Workers and detecting co-location. An attacker spawning its
instances close in time to the victim’s one can maximize the probability of
co-location [49]. Cloudflare Workers architecture aims to serve the same
application from every location. A high number of tenants per machine
is possible. Physical co-location of the attacker server is not required.
However, this leads to the strongest possible attacker. We assume no
exploitable software bugs, e.g., memory safety violations, in the JavaScript
engine and no sandbox escapes. Thus, architectural exploits to leak data
from other tenants or processes are not possible.

The typical requirements for state-of-the-art Spectre attacks on the timer
and memory are listed in Table 6.1, showing the differences to our attack.
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Figure 6.2 provides an overview of our attack. In the Cloudflare Workers
setup, each worker runs in the same process, and thus, shares the virtual
address space. The attacker runs a malicious JavaScript file containing a
self-crafted Spectre-PHT gadget that performs a Spectre attack on its own
process. As the victim and attacker share the same process, the attacker
can leak sensitive data from a victim worker, without having an existing
Spectre gadget in the victim.

Spectre attacks in JavaScript rely on speculative out-of-bounds accesses
of objects. Assuming the attacker can either trigger a victim worker’s
secret allocation, delay it, or just manages to execute before the victim,
we can use heap-grooming techniques [21] to bring the process memory
into a predictable state before both the leaking object and the victim
data are allocated. Alternatively, the attacker worker can predict the
offset between the leaking object and the victim worker’s data, target a
certain range of the virtual memory, e.g., regions where V8 places similar
objects [61], or break ASLR using speculative probing [19]. Hence, ASLR
does not mitigate the attack. Furthermore, Agarwal [1] demonstrated
that it is possible to leak over the full address space using a JavaScript
Spectre attack in the V8 engine.

For our attack, we rely on a Spectre-PHT [34] gadget, as this is the simplest
gadget to introduce in JIT-compiled code. Moreover, Spectre-BTB [34]
can be prevented by the JIT compiler [59]. In contrast to the original
Spectre attack [34], we do not encode the data bytewise but bitwise. The
advantage of such a binary Spectre gadget is that it is easier to distinguish
two states compared to 256 states using a side channel [4, 55]. While such
a gadget might not be commonly found in real applications, it is easy to
introduce.

As there are no high-resolution timers to distinguish microarchitectural
states directly, we have to amplify the timing difference between a cache
hit and a miss, i.e., between a leaked ‘0’ and ‘1’ bit. We combine the am-
plification techniques by McIlroy et al. [41] with the remote measurement
methods by Schwarz et al. [55]. With this semi-remote Spectre attack,
we show that it is indeed feasible to leak data from co-located Cloudflare
Workers in such a restricted setting. Our Spectre attack is the only one
not requiring native code execution, a local timer, or an existing gadget.
Moreover, microcode cannot prevent it (cf. Table 6.1).
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Table 6.1.: Requirements and leakage rate of Spectre attacks.
Spectre attack (variant) Gadget Native HR Timer Memory Leakage Rate Error Channel

Kocher et al. [34] (PHT) Yes Yes Yes (ns) 2.40 MB 4420.46 B/s ± 6.75 % 0.07 % Cache-L3
Canella et al. [7] (PHT) Yes Yes Yes (ns) 3.54 MB 3.13 B/s ± 113.79 % 0.00 % Cache-L3
Safeside [20] (PHT) Yes Yes Yes (ns) 7.00 MB 4384.03 B/s ± 7.75 % 0.00 % Cache-L3
Canella et al. [7] (BTB) Yes Yes Yes (ns) 6.91 MB 0.71 B/s ± 2.43 % 0.00 % Cache-L3
SafeSide [20] (BTB) Yes Yes Yes (ns) 7.01 MB 269.53 B/s ± 0.85 % 0.00 % Cache-L3
Canella et al. [7] (STL) Yes Yes Yes (ns) 3.54 MB 14.37 B/s ± 211.95 % 0.00 % Cache-L3
Safeside [20] (STL) Yes Yes Yes (ns) 7.00 MB 272.46 B/s ± 0.22 % 0.00 % Cache-L3
Canella et al. [7] (RSB) Yes Yes Yes (ns) 20.08 MB 30.67 B/s ± 195.59 % 0.00 % Cache-L3
Safeside [20] (RSB) Yes Yes Yes (ns) 7.00 MB 116.70 B/s ± 0.58 % 0.00 % Cache-L3
Google [57] (PHT) No No Yes (µs) 15.00 MB 335.02 B/s ± 23.50 % 0.26 % Cache-L1
Google [57] (PHT) No No Yes (ms) 15.00 MB 9.46 B/s ± 31.40 % 2.71 % Cache-L1
Agarwal et al. [1] (PHT) No No Yes (µs) N/A 533.00 B/s ± N/A 0.32 % Cache-L3
Schwarz et al. [55] (PHT) Yes Yes No N/A 7.50 B/h ± N/A 0.58 % AVX unit
Our work (PHT) No No No 27.54 MB 15.00 B/h ± 2.67 % 0.00 % Cache-L3

Gadget: Spectre gadget must be in victim; Native: native code execution; HR Timer: High-resolution

timer

6.3.2. Building Blocks

As our attack uses the cache as the covert-channel part of the Spectre
attack, we require building blocks for measuring the timing of cache
accesses in JavaScript. While this can be done using a high-resolution
timer in some browsers [34], the required primitives are not available on
Cloudflare Workers. Hence, in addition to a different timing primitive
with a lower resolution, we have to amplify the signal such that we can
reliably distinguish ‘0’ and ‘1’ bits.

Remote Timer On Cloudflare Workers, there are no local timers
or known primitives to build timers [54]. We verified that, indeed, no
technique from Schwarz et al. [54] resulted in a timer with a resolution
higher than 100 ms. Thus, there is no possibility to accurately measure
the time directly in JavaScript, and, therefore, it is not possible to perform
a local Spectre attack [34].

In this setup, the attacker sends a network request to a remote server
to start a timing measurement. The remote server stores a local high-
resolution timestamp, e.g., using rdtsc, associated with the request. To
stop the timing measurement and receive the time delta, the attacker
sends another request to the remote server, which sends back the time
difference from the current to the stored timestamp. Hence, the attacker
has a high-resolution time difference that is only impacted by the network
latency between the attacker’s worker and the remote server. We evaluated
this timing primitive on Cloudflare Workers . For the best case, i.e., same
physical machine, we achieve a resolution of 0.47 ns on a 2.1GHz CPU,
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if (secret_bit) {

read A; //transiently leak bit

} else

{

read B;

}

read A; //perform architectural access

Listing 6.1: Amplified Spectre-PHT gadget [41].

with a jitter of 1.67 %. With a resolution of 0.47 ns, we can distinguish a
cache hit from a miss for the cache covert channel. However, this case is
unlikely in reality, as the latency is typically in the microsecond range [63].

Amplification In our attack scenario, the attacker has no high-resolution
timer but full control over the Spectre gadget. Hence, to mount a successful
attack with the remote timer, we have to rely on amplification techniques
that amplify the latency between a cache hit and miss [41]. One such
technique is to transiently access multiple cache lines for a single bit instead
of a single cache line and probe over these to increase the latency between a
cache hit and a miss. However, this technique is quite memory-consuming
and limited by the number of cache lines.

A way to arbitrarily amplify the latency between cache hits and misses is
to either access a memory location which encodes a ‘0’ or ‘1’ bit transiently
and then accesses the memory location for a ‘1’ again architecturally [58].
listing 6.1 illustrates an arbitrary amplification [58] gadget. If the Spectre
gadget is optimal in terms of mistraining, we have twice as many cache
misses for a ‘0’ bit as for a ‘1’ bit. With a loop over the gadget, we can
create arbitrarily large timing differences between hits and misses. We
evaluate the amplification idea on an Intel Xeon Silver 4208, running
Ubuntu 20.04 (kernel 5.4.0) in native code. We increase the number of
amplification iterations and run each iteration 1000 times to get stable
results. This leads to a linear growth with the increase of the number of
loop iterations (amplification factor). Depending on how much runtime is
given to the worker, it is possible to arbitrarily increase the delay. Hence,
we can also see that there are no strict requirements for the resolution of
the remote timer. For lower resolutions, we can increase the amplification,
resulting in a reduced leakage rate, no prevention of the attack, as also
shown in related work [57].
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Eviction To repeat our amplification and reset the cache state, cache
eviction is required. One way to evict certain addresses from the cache is
by building eviction sets [23, 44, 64]. While a targeted eviction set leads to
a fast eviction, building the eviction set is costly. Even with a local timer,
the currently fastest approach takes more than 100 ms [64]. In our remote
scenario, this would require a lot of network requests to find the eviction
set for our encoding oracle, as building the eviction set requires constant
timing measurements. Furthermore, eviction sets cannot be reused due to
address-space-layout randomization on each run. Instead of using eviction
sets, we iterate over a large eviction array (multiple MB, depending on the
cache size) in cache-line steps (64 byte) and access the values. If enough
addresses are accessed, the cached value is evicted [23, 34].

We evaluate the eviction directly on the V8 engine used in Cloudflare
Workers on an Intel Xeon Silver 4208, running Ubuntu 20.04 (kernel 5.4.0).
We access a certain index v of a large array to cache it, iterate over the
eviction set, and verify if v is still cached. We observe that an eviction
array of 2 MB always evicts v on our Intel Xeon Silver 4208 (n = 1000).

Note that address randomization can be deterministically circumvented
using engineering. Göktas et al. [19] introduced the concept of a spec-
ulative probing primitive that leverages Spectre to break classical and
fine-grained ASLR. Gras et al. [22], Schwarz et al. [51], and Lipp et al.
[36] demonstrated that microarchitectural attacks in JavaScript can break
memory randomization.

6.3.3. Attack on Cloudflare Workers

Using the building blocks, we mount an attack on Cloudflare Workers
to extract secret bits from a worker at a known location to estimate
the best possible attack. For that, we send an initial request with a
sequence number to a timing server. The timing server stores a local,
high-resolution timestamp on this request. We perform a Spectre attack
on a target address and send another request to the server. The timing
server computes the delta between the current and the stored timestamp
to distinguish between a cache hit or miss. As the attacker controls both
the attacking worker and the timing server, there is no need to send the
leaked information back to the worker.

There are different challenges when creating a JavaScript Spectre PoC,
as the V8 JIT compiler optimizes code based on assumptions. If such



6.3. Remote Spectre Attacks on Cloudflare Workers 117

assumptions are invalidated, the function is de-optimized. We thus avoid
triggering any de-optimization points in our generated code, as that
ruins the training achieved. Therefore, we place the out-of-bound access
behind a mispredicted guard branch, preventing the JIT compiler from
de-optimizing the code when detecting out-of-bound accesses. Moreover,
during the garbage collection phase, objects move between different heap
spaces of the same worker to reduce the memory footprint. By forcing
garbage collection phases, we stabilize an object’s location.

Evaluation. To develop and evaluate a proof-of-concept attack, we
obtained a local developer copy of Cloudflare Workers to not interfere
with any worker of other customers. We ensured that the configuration
on our local system is identical to the configuration running on the cloud.
As Cloudflare Workers mostly use server CPUs, we also focus our attack
on an Intel server CPU, specifically an Intel Xeon Silver 4208, running
Ubuntu 20.04 (kernel 5.4.0).

We create a Spectre-PHT PoC that leaks bits from a victim ArrayBuffer

by transiently reading out-of-bounds. We describe the technical implemen-
tation details for optimal leakage in the extended version [56] (Appendix
B).

We call the function performing a Spectre attack 10 000 times and repeat
the experiment 1000 times, observing a success rate of 54.31 % (n = 1000,
σ = 23.16 %). We assume that the attacker is capable of creating a stable
exploit with 100 % success rate. From now on, we evaluate our metrics
with a 100 % success rate to estimate the best possible attack, where the
attacker knows where the secret array is located.

We evaluate a set of different amplification factors (number of loop itera-
tions) in native code between 1 and 1000 , and sample each loop length
100 000. We implement the box test [14] to determine the number of
required requests [6, 14, 63]. Figure 6.3a illustrates the number of requests
required to achieve a certain success rate for different amplification factors.
The higher the amplification factor is, the fewer requests are required to
achieve high success rates. As Figure 6.3b illustrates, with small amplifi-
cation factors but enough requests, we can also achieve a high success rate
of more than 95 %. We refer to the work of Van Goethem et al. [63] and
Schwarz et al. [55] for the required requests in a network with multiple
hops.

We evaluate our attack locally, i.e., with a timing server on the same
machine. We first evaluate an optimal attack in native code. Ideally, an
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attacker chooses the number with the highest success rate and the lowest
number of requests required, minimizing the execution time. We choose
a random 16-bit secret. As amplification factor, we choose 100 000 loop
iterations and perform just one request. With this setup, leaking one bit
takes on average 2.5 s (n = 100, σx̄ = 0.05 %). We repeat the experiment
100 times and observe a leakage rate of 23 bit/s (n = 100, σx̄ = 2.8 %).
Using an outlier filter, this error can be reduced towards 0. As these
values are from a native-code attack, we consider these numbers as the
maximum achievable leakage rate for JavaScript. A JavaScript attacker
is more restricted in terms of evicting certain addresses from the cache
and thus requires additional time for the eviction. Furthermore, the code
is JIT-compiled, requiring a warmup to stabilize the JIT-compiled code.
We evaluate the amplification in JavaScript in the V8 engine with an
amplification factor of 250 000, a native timestamp counter to measure
the response times, and a random 16 bit secret. One script execution
takes about 30 s, which is the maximum execution time for Cloudflare
Workers [12]. All evaluated numbers are shown in Table 2 in the extended
version [56] (Appendix A). With a success rate of 100 % we determine an
optimal leakage rate of 2 bit/min leading to a leakage rate of 120 bit/h.
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6.4. DyPrIs

In this section, we present an approach to dynamically isolate malicious
Cloudflare Workers to benefit both from the security of process isolation
and the performance of language-level isolation. The basic idea is to use
HPCs to detect potential Spectre attacks and isolate suspicious Cloudflare
Workers using process isolation (Figure 6.4). While a detection mechanism
typically suffers from false positives, DyPrIs can cope even with high false-
positive rates. In the worst case, a Spectre attack is detected for every
worker, leading to the worst-case scenario of one worker per process, i.e.,
strict process isolation, as currently used in browsers plus the 2 % detection
overhead. As workers are stateless, they can also be suspended or migrated
at any time. Thus, even if many worker are considered malicious, the
resources of Cloudflare are not exhausted. Every false-positive rate below
100 % performs better than strict process isolation.

We discuss how to reliably detect Spectre attacks using performance
counters (cf. Section 6.4.1). We integrate our approach into Cloudflare
Workers and measure the performance overhead of reading performance
counters on a real-world cloud system (cf. Section 6.4.2). We show that
there is a small performance overhead of 2 % for reading performance
counters.

6.4.1. Detecting Spectre Attacks

In this section, we discuss the detection of Spectre attacks using HPCs.
While the common use of HPCs is finding bottlenecks, researchers used
HPCs for detecting malware, rootkits, CFI violations, ROP, Rowhammer,
or cache-side channel attacks [5, 8, 24, 28, 39, 68, 69, 73].

Detecting Attacks using Normalized Performance Counters

Our second approach tries to detect Spectre attacks using normalized
performance counters. At first we collect data from different performance
counters. We collect the following hardware events (PERF COUNT HW *):
CACHE iTLB, BRANCH MISSES, BRANCH INSTRUCTIONS, CACHE REFERENCES,
CACHE MISSES, CACHE L1D/READ MISSES and CACHE L1D/READ ACCESSES.
We normalize the values using iTLB performance counters (iTLB accesses)
which was also used by Gruss et al. [24] to detect Rowhammer and cache
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Figure 6.4.: DyPrIs isolating a malicious worker based on performance counters.

attacks. Similarly to Rowhammer and cache attacks, the main attack
code for Spectre has a small code footprint with a high activity in the
branch-prediction unit.

The iTLB counter normalizes the branch-prediction events with respect
to the code size by dividing the performance counter value by the number
of iTLB accesses. We integrate the monitor into Cloudflare Workers, to
read the performance counters before and after each script execution. The
averaged per-execution numbers are updated in a 1-second interval (Note
that a single script runs up to 30 s [12]). While reducing the interval does
not directly impact the performance of a worker, it potentially leads to
more false positives as outliers are not filtered. We collect data from the
benign workload and compare it to a worker executing a Spectre attack.
Based on the performance numbers, we find a threshold to distinguish
between an attack and normal workload. We evaluate this approach
in Section 6.5.1.
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6.4.2. Process Isolation

For DyPrIs, we fundamentally rely on process isolation. A well-known
implementation of process isolation is site isolation, where every page in
a browser runs in its own process to prevent memory safety violations
as well as Spectre attacks [48]. However, in contrast to full site isolation,
we only isolate potentially malicious Cloudflare Workers if the Spectre
detection mechanism flags them. Hence, DyPrIs only falls back to full site
isolation in the worst case, while reducing the overhead caused by process
isolation in the average case.

Related work proposes efficient in-process isolation mechanisms using Intel
Memory Protection Keys (MPK) [45, 50, 62]. However, Intel MPK is
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only available on selected CPUs since Skylake-SP, limited to 16 protec-
tion keys and thus not practical for Cloudflare Workers [62], running
multiple thousand workers per process. Furthermore, the threat model
of these approaches does not include side-channel or transient-execution
attacks. For DyPrIs, we modify the Cloudflare Workers software to iso-
late a potentially malicious worker, i.e., a worker that was flagged by
the performance-counter-based detection, into a separate process. We
implement process isolation in Cloudflare Workers from scratch (cf. Fig-
ure 6.5). For that, we start process sandboxes by forking from a zygote
process, and talk to the new process over an RPC protocol [3, 9]. All
communication between the main process and the isolated process are
over this RPC connection, communications between the process sandbox
and the outside have to go through the main process. Since the runtime
of a worker is, on average, less than 1 ms, the isolation must not introduce
a high performance overhead. Thus, one instance of a worker frequently
reads out the performance counters per script execution and computes
a moving average. From our results in Section 6.5, we observed that
the normalized iTLB performance provides the best detection tradeoff in
terms of performance overhead and accuracy. We first run an attack and
collect its performance-counter data. Additionally, we collect anonymized
per-CPU-core performance-counter data of real scripts running in pro-
duction. Based on our evaluation in Section 6.5.1, we use a threshold of
4096 retired branches per iTLB access to distinguish between a suspicious
and a benign script. If a script exceeds this threshold, we flag it as a
potential Spectre attack and isolate it into a separate process. In contrast
to, e.g., browser tabs, worker are stateless. Thus, a worker can simply be
migrated. Isolating instead of terminating ensures that the worker can
continue running, e.g., in case the detection was a false positive, while it
cannot access data of any other worker.

6.5. Evaluation

In this section, we evaluate the accuracy and performance overhead of our
detection methodology. We choose a threshold of 4096 branch accesses per
iTLB access, which allows distinguishing a Spectre attack from a benign
script. We use a large set of different programs to sample the number of
mispredicted and retired branches. For our set, we observe that out of
141 programs, which includes the 13 Spectre gadgets from Kocher [33], we
cannot distinguish 4 benign programs from a Spectre gadget, resulting in
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a false-positive rate of 2.83 % with a small performance overhead of 2 %.
Using our normalized counters approach, we observe a negligible overhead
of 2 % in our production environment.

6.5.1. Normalized Performance Counters

We evaluated our approach on 5 Intel Xeon server CPUs (Broadwell,
Skylake 4116, Skylake 6162, Skylake 6162, Cascade Lake 6262) and one
AMD Epyc Rome CPU. To decide whether a script is susceptible or not,
we collect performance data from the production system running our
Spectre attack. We recorded the performance counters on the production
environment and sampled over 50 000 times as a baseline. Figure 6.6
shows the normalized performance counters of our cloud machines. For
last-level-cache accesses, misses, and branch misses, the numbers of the
attack script are below the average script. For the number of L1-cache
accesses and retired branches, we can clearly distinguish average script
from attack. Especially for the retired branches, the distance between
an attack script and the average regular script is 34 times the standard
deviation of a benign script. We collected our numbers from real-world
worker production machines to calculate the false-positive rate. We choose
the number of normalized retired branch instructions as an indicator for a
Spectre attack and run it on our cloud machines. First, we run a Spectre
attack to verify whether their number is in a similar range on each test
machine. We then evaluate different threshold boundaries for the number
of normalized retired branch instructions and report the number of false
positives. Figure 6.7 shows the number of false positives depending on
the threshold on our cloud machines in the production environment. For
a strict threshold, i.e., 1024, the false-positive rate is 21.41 %. However,
this threshold is set higher to reduce the number of false positives. The
numbers of false positives are in a similar range on each of the tested
machines. Setting the threshold to 4096, results in an average false positive
rate of 0.61 % on our devices. For a threshold of 8192 the average false-
positive rate decreases to 0.26 %, and at a threshold of 65 536 , we do not
observe any false positives.
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Figure 6.6.: Performance counters of average Cloudflare Workers and a Spectre
attack on the production system.
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Next, we look at the performance overhead of our attack when the attacker
tries to get below the detection thresholds. Getting below this threshold
requires the attacker to significantly slow down the amplified Spectre
attack. Since the attacker cannot get rid of the cache eviction, the number
of amplification iterations has to be reduced. Consequently, if the number
of amplification iterations is reduced, more requests, i.e., samples, are
required to clearly distinguish cache hits and misses (cf. Figures 6.3a
and 6.3b). We evaluate the best possible attacker in native code who only
mistrains one branch. By omitting amplification or with a small factor
of 10, we can reduce the number of retired branch instructions / iTLB
accesses on our test devices to 604.71 and 3492.41, respectively, which is in
the ranges of an average script. However, with the latter, the leakage rate
is 1 bit/h. Thus, we set the threshold to 4096 and receive an average false
positive rate of 0.61 % on our tested devices. Figure 6.8 illustrates the
decrease in leakage if the attack degrades from an amplified Spectre attack
to a sequential attack. Using a non-amplified approach, about 250 000
requests are required (Section 6.3.3). We achieve a leakage of 1 bit/h
in a local-network scenario. Hence, as an additional security margin,
we limit the number of subsequent requests per worker to 10 000 on the
same machine. If more than 10 000 requests are issued, we redirect the
request to a different machine. Thus, we can still prevent leakage from a
slowed-down attack using our threshold-based approach. We assume that
there are no attacks running on the production system, thus we cannot
measure the number of false negatives. Our own attack is detected by
the threshold, as well as the 15 Spectre samples provided by Kocher [33].
In addition, we evaluated and analyzed the new and larger Spectre-PHT
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gadgets generated by FastSpec [60]. The gadgets are based on the the
15 variants, and we observe that the generated gadgets are quite similar.
We evaluated 100 random gadgets from FastSpec and did not observe any
false negatives with our detection. As the mistraining for those gadgets is
similar, the branch accesses per iTLB access are in a similar range. We
also evaluated the detection on the Spectre JavaScript PoC from Röttger
and Janc [57]. Even with the low amplification factor of 4 000 in this PoC,
we reliably detect the attack (n = 500, µ = 19 253.73 ).

Spectre-BTB, Spectre-RSB and Spectre-STL. In addition to Spectre-
PHT we also run our performance counter analysis on other Spectre
variants exploiting the branch-target buffer (BTB), return-stack buffer
(RSB) and store-to-load (STL) forwarding. We create native code proof-
of-concepts for these variants executing each gadget 10 000 times on a
Xeon Silver 4208. We ran the PoCs 500 times and collected the number
of branch and iTLB accesses. The numbers for Spectre-BTB and RSP
are an order of magnitude lower than for Spectre-PHT (µbtb = 423171.54).
However, they are still detected with the same metric (n = 500): Spectre-
BTB (µbtb = 23401.20), Spectre-RSB (µrsb = 38369.17), Spectre-STL
(µstl = 982.20). The metric for Spectre-STL is far below the threshold of
4096. However, the values for memory disambiguation.history reset

are significantly higher on average if the store-to-load logic is exploited
in Spectre-STL (n = 500, µstl = 8993.98, µnostl = 2644.73). Thus, we also
use this counter to detect potential Spectre-STL attacks.
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Figure 6.8.: Branch accesses / iTLB accesses and the corresponding leakage
rate.
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6.5.2. DyPrIs
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Figure 6.9.: Requests per second and memory consumption of process isolation.

We integrate DyPrIs in Cloudflare Workers, which requires modifications
of 6459 lines of code, not including the Spectre detection mechanism. As
with any isolation technology, the performance overhead varies depending
on the workload [48]. Cloudflare Workers is an environment where typical
guest workloads use very little memory and spend very little CPU time
responding to any particular event. As a result, in this environment,
DyPrIs’s overhead is expected to be large compared to the underlying
workload. In a first test, we evaluate the overhead for a test script by
increasing the number of isolated processes, i.e., the number of sandboxed
V8 isolates, up to 500. We measure the overhead in terms of executed
scripts per second, i.e., the requests executed per second from the localhost
and the total amount of consumed main memory. The execution is repeated
10 times per isolation level with 2000 requests (n = 20000, σrps = 3.87 %,
σmem = 0.23 %). Figure 6.9 shows the requests per second and the total
memory consumption based on the number of isolated V8 processes. As
expected, we observe a linear decrease in the possible number of requests
per second and a linear increase in the memory consumption. Further,
we performed a load test of Cloudflare Workers runtime using a selection
of sample guest workers simulating a heavy-load machine. They mostly
respond to I/O in under a millisecond and allocate little memory. By
forcing process isolation on the workers, the memory overhead of each guest
was 2x-5x higher, and CPU time was 8x higher, compared to a worker
using a single process. We performed a second test using a real-world
worker known to be unusually resource hungry in both CPU and memory
usage. In this case, memory overhead is 20 %-70 % worse with DyPrIs,
and CPU time about 60 % worse. These numbers appear to be high,
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but when only 0.61 % of workers are isolated, the overhead is negligible.
As our proof of concept was not optimized, it still has big potential for
optimizations. For example, it currently uses an RPC protocol [3] to
communicate between processes, but does so over a Unix domain socket.
This protocol is designed in such a way that it could be communicated in
shared memory, reducing communication overhead. The implementation
could also use OS primitives for faster context switching, such as the
FUTEX SWAP feature proposed by Google. However, while especially
the CPU overhead could be reduced, there is always a significant cost
incurred by context switching and marshalling to communicate between
processes. The total overhead on all machines can only be estimated
as it depends on the workload. The detection overhead is 2 %. In the
worst case, we are slightly worse than full process isolation due to the 2 %
detection overhead.

6.6. Discussion

Comparison between Cloudflare Workers and competing ap-
proaches. The main challenge of edge computing is to run various ap-
plications of numerous tenants efficiently. Approaches like AWS Lambda
and Azure Functions rely on containers to achieve this [2, 42]. While their
design strictly prevents Spectre attacks on other tenants, the performance
overhead is higher for the use case of edge computing than Cloudflare
Workers [11]. The Cloudflare Workers architecture is stateless in a sense
that every worker in any data centre can process any request, i.e., the
request is processed by the worker with the lowest latency. Cloudflare
Workers rely on a single-process architecture with language-level isola-
tion to isolate their tenants architecturally. However, as we showed, this
design leads to potential Spectre attacks. A similar design with language-
level isolation of WebAssembly code from different tenants is used by
Fastly [17]. Therefore, Fastly also needs to consider Spectre attacks within
the same process by either applying DyPrIs or switching to full isolation
via processes or containers.

Mitigation versus Detection. Especially in high-performance sce-
narios, such as cloud systems, Spectre mitigations [7, 31, 34] result in
high power consumption. Hence, instead of paying the constant costs of
mitigations, dectecing attack can reduce the costs. However, the problem
of detecting side-channel and transient-execution attacks is still an open
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research problem. There is no universal solution that covers all different
types of attacks.

False Positives and Negatives. DyPrIs suffers from false positives
and false negatives [15, 72], similar to other detection and mitigation
techniques [25, 65]. False positives only impact the performance and not
the security. False negatives occur when slowing down attacks to 1 bit/h
(cf. Table 2 in Appendix A in the extended version [56]). Therefore, the
maximum execution time is restricted to 30 s, far from 1 h. Using the
machine learning approach of Gulmezoglu [26], the false positive rate could
be reduced further. However, this approach would require a re-training
with real-world data of Cloudflare Workers and a frequent re-updating of
the training set. Adding additional code pages also allows getting below
the thresholds. To “hide” the native attack, we access 125 additional code
pages (500 kB) per bit to get the branch accesses / iTLB accesses below
the threshold (cf. Figure 10 in Appendix A in the extended version [56]).
While feasible in native code, the resulting code size causes V8 to abort
the optimization phase, stopping the attack.

Comparison to existing detections Besides full site isolation, prior
work discusses detection but not how to stop attacks once they are de-
tected. Existing static analysis approaches [13, 27] on binaries are not
applicable to the use case of Cloudflare Workers . Approaches that perform
taint tracking and fuzzing on binaries to dynamically detect gadgets [25,
47, 52, 65] are infeasible for the high-performance requirements of Cloud-
flare Workers. The approach of Mambretti et al. [40] does not evaluate
real-world workloads and cannot distinguish the different workloads of
Cloudflare Workers from an external process.

Reliability of HPCs In DyPrIs As Zhou et al. [72] and Das et al. [15]
discuss, using HPCs for detection of cache attacks can lead to flaws caused
by non-determinism and overcounting. We showed that in our statistical
approach both only marginally reduce the performance of DyPrIs not the
security.

Alternative Spectre JS attacks Concurrent work [57] has demon-
strated a Spectre exploit on V8, leaking up to 60 B/s using timers with
a precision of 1 ms or worse through a L1 covert channel. Similarly to
our PoC, it uses a Spectre-PHT gadget to read out-of-bound from a
JavaScript TypedArray, giving an attacker access to the entire address
space. The PoC uses small-sized TypedArrays for which the backing store
is allocated in the isolate itself. Thus, it leaks data inside the same isolate.
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In concurrent work, Agarwal et al. [1] has extended the PoC from Röttger
and Janc [57] to leak data using 64-bit addresses using a local timing
source. They use speculative type confusion between an ArrayBuffer and
a custom object that should be properly aligned across two cache lines.

6.7. Conclusion

In this paper, we presented DyPrIs, a practical low-overhead solution
to actively detect and mitigate Spectre attacks. We first presented an
amplified JavaScript remote attack on Cloudflare Workers, which leaks
2 bit/min, i.e., 1 bit per worker invocation. We proposed a practical ap-
proach for actively detecting and mitigating Spectre attacks. We show that
it is still possible to efficiently detect Spectre attacks using performance
counters with a false-positive rate of 0.61 % at the cost of 2 % overhead
for the detection. We demonstrate that conditionally applying process
isolation based on a detection mechanism has a better performance than
full process isolation, under the same security guarantees.
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Appendix

A. Current Worker Limits and JS Attack Numbers

The state-of-the art limits of the Cloudflare Workers setup for a single
instance is 128 MB memory, and 30 s runtime. We provide the leakage
rate depending on the amplification factor in Table 6.2.
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Table 6.2.: Attack results of our JS attack.

Amplification Required requests Script runtime Leaked bits/hour

1 250 000 118 ms 0 bit/h
10 25 000 123 ms 1 bit/h

100 2500 137 ms 10 bit/h
1000 250 231 ms 62 bit/h

10 000 25 1813 ms 79 bit/h
250 000 1 30 000 ms 120 bit/h
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Figure 6.10.: Influence of the number of additional code pages on the branch
accesses / iTLB accesses.

B. Spectre-Attack Optimizations

The function containing the Spectre gadget accesses the attacker’s Ar-

rayBuffer through differently-sized TypedArrays. This prevents the JIT
compiler from making assumptions on the memory accesses on the Array-

Buffer. Otherwise, the JIT compiler hard-codes the size for the bounds
check, which significantly decreases the success probability for the Spectre
attack. As the garbage collector moves objects around, using multiple
TypedArrays increases the probability of having correctly aligned objects,
such that the backing store pointer and the size of the ArrayBuffer lie
on different cache lines. We also increase the size of the attacker function
to avoid it being inlined, which would cause de-optimization if the calling
function is de-optimized. The function takes the offset to access as a
parameter and is called in a loop with a branch-less code that feeds it
with four in-bound offsets and an out-of-bound offset to access.
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We warm-up the JIT compilation by repeatedly calling our function with
an out-of-bound index higher than the one in the guard branch, but
in-bound of the TypedArray, preventing the JIT compiler from making
assumptions on the provided value. We also found that executing a
different number of taken conditional branches before executing the target
function affected the leakage rate considerably. By automatically tuning
the number of such branches, we verified that 70 is the optimal number
for our PoC.

C. Noise on Cache Attacks

We evaluated the attack PoC of Röttger and Janc [57] with respect to
memory-intense system workloads. We pin the attack PoC program
to a specific hyperthread and perform memory pressure on the sibling
hyperthread. To simulate such a behaviour, we use the stress tool with
-m 10 option on the sibling hyperthread and other cores. As the PoC of
Röttger relies on amplification using the L1 replacement policy, the attack
is practically mitigated by the additional cache activity. For our optimal
attack, we observe a decrease of the success rate to 75 % for the time the
other hyperthread creates memory pressure.
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Andrés Sánchez. “SPECTECTOR: Principled Detection of Specu-
lative Information Flows.” In: S&P. 2020.

[26] Berk Gulmezoglu, Ahmad Moghimi, Thomas Eisenbarth, and Berk
Sunar. “FortuneTeller: Predicting Microarchitectural Attacks via
Unsupervised Deep Learning.” In: arXiv:1907.03651 (2019).

[27] Red Hat. Spectre And Meltdown Detector. 2018. url: https://

access.redhat.com/labsinfo/speculativeexecution.

[28] Nishad Herath and Anders Fogh. “These are Not Your Grand
Daddys CPU Performance Counters – CPU Hardware Performance
Counters for Security.” In: Black Hat Briefings. 2015.

[29] Jann Horn. speculative execution, variant 4: speculative store bypass.
2018.

[30] Intel. Intel Analysis of Speculative Execution Side Channels. Revi-
sion 4.0. 2018.

[31] Intel. Speculative Execution Side Channel Mitigations. Revision 3.0.
2018.

[32] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. “MASCAT:
Preventing microarchitectural attacks before distribution.” In: CO-
DASPY. 2018.

https://github.com/google/safeside
https://googleprojectzero.blogspot.com/2015/06/what-is-good-memory-corruption.html
https://googleprojectzero.blogspot.com/2015/06/what-is-good-memory-corruption.html
https://access.redhat.com/labsinfo/speculativeexecution
https://access.redhat.com/labsinfo/speculativeexecution


References 135

[33] Paul Kocher. Spectre Mitigations in Microsoft’s C/C++ Compiler.
2018.

[34] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard,
Thomas Prescher, Michael Schwarz, and Yuval Yarom. “Spectre
Attacks: Exploiting Speculative Execution.” In: S&P. 2019.

[35] Esmaeil Mohammadian Koruyeh, Khaled Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. “Spectre Returns! Speculation At-
tacks using the Return Stack Buffer.” In: WOOT. 2018.
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Abstract

Attacks exploiting speculative execution, known as Spectre attacks, have
gained substantial attention in the scientific community and in industry
with a broad range of defense techniques proposed. In particular, in-
software defenses for commodity systems attempt to leave the program
structure as is, but defuse every potential Spectre gadget by, e.g., stopping
the speculation, or limiting value ranges. While these mitigations disrupt
the program flow on every conditional branch, they still contain every
single conditional branch instruction.

In this paper, we show that one dimension of Spectre mitigations has
been overlooked entirely. We explore a novel principled Spectre mitigation
that sits at the other end of the scale: the absence of conditional and
indirect branches. Our mitigation is based on automatically linearizing the
program flow through a special compiler pass, eliminating all conditional
and indirect branches. We show that our Spectre mitigation has very clear
security guarantees. We explore the feasibility of this unorthodox approach
and evaluate its performance in comparison to the more conservative
approaches presented so far. We observe that the performance overhead
can be low, e.g., 5 %, for certain use cases, being on-par with state-of-the-
art mitigations, but very high for other use cases, e.g., and overhead factor
of 1000. Our results demonstrate the feasibility of Spectre defenses that
eliminate branches and indicate good performance-security trade-offs for
Spectre defenses can be achieved by sticking to neither of the extremes.
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7.1. Introduction

Speculative execution is a significant factor in the performance of modern
processors. Instead of waiting for a branch decision or branch target
to be architecturally determined, the processor takes an educated guess
based on behavior observed in the past. From a pipeline perspective, this
linearizes the execution of instructions as the branch decision is omitted
in the speculative execution flow and only subsequently validated. Spectre
attacks [29] induce incorrect speculative execution flows into a victim
context by manipulating the branch predictors. During this speculative
execution, the attacker can make the victim access secrets and encode
them into the microarchitectural state. Using a side-channel attack, e.g.,
Flush+Reload [54], the secrets can then be recovered.

Previous countermeasures [9, 10, 34] either attempt to thwart successful
covert-channel transmission during speculation [25, 26, 53], abort the
speculative execution before secrets can be accessed [1, 11, 21, 22, 37,
39, 48, 49], or ensure that secrets cannot be accessed during speculative
execution [41, 42, 56]. Amit et al. [2] tried to increase the performance of
indirect branches by rewriting them into two direct branches. However,
from the perspective of branches in a program, all these countermeasures
remain in the same range of the scale, namely all conditional and indirect
branches remain in the program, in some cases even with additional
branches added. This raises an important scientific question:

Can the (substantial) reduction of branches, in particular the elimination
of all vulnerable branches, be a viable Spectre mitigations? Can such
Spectre mitigations maintain a reasonable overhead in certain use cases?

In this paper, we answer both questions in the affirmative. To answer these
scientific questions, we explore a novel Spectre mitigation at the other
end of the scale: the elimination of all conditional and indirect branches.
While this may sound impractical at first, it has been used for years to
implement cryptographic algorithms in constant time [5]. We demonstrate
the feasibility of this approach with our new mitigation, Specfuscator.
Specfuscator is based on the movfuscator [12] tool that automatically
linearizes the program flow through a special compiler pass. In contrast
to M/o/Vfuscator , we do not replace all operations, but just control-flow
manipulating instructions, effectively eliminating all conditional branches.
To improve the performance of M/o/Vfuscator , we bring back ALU
operations, the cmp instruction and exploit the x86 addressing mode. In
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comparison to the M/o/Vfuscator we increase the runtime up to a factor
of 50 and decrease the binary size by 30 % and compile time up to 46 %.
We show that our Spectre mitigation is a principled approach with respect
to security, following the simple argument that if there are no conditional
or indirect branches, no branches can be mispredicted.

For our evaluation we analyzed Specfuscator in comparison with a set of
other compilers: the related M/o/Vfuscator and LCC, a patched clang
with lfence protections on all conditional branches, and an unpatched
clang without any Spectre mitigations. We evaluate the performance
of our unorthodox approach and discover that the overhead can be as
low as 5 %, being on-par with state-of-the-art mitigations, but also much
higher, up to factor 1000, performing clearly worse than state-of-the-art
mitigations. Thus, for some use cases, the elimination of conditional and
indirect branches is nearly as efficient as state-of-the-art mitigations but
with a stronger security argument. This indicates that the space between
the two extremes, all conditional and indirect branches and no conditional
and indirect branches, should receive more attention for the design of
future countermeasures.

Our key contributions are:

• We explore a previously unexplored mitigation space against Spectre:
the absence of conditional and indirect branches.

• We present a solution based on a linearized control-flow with very clear
and strong security guarantees.

• We evaluate our approach and observe that the performance overhead
can be lower than state-of-the-art mitigations in some use cases, but
also significantly higher in others.

• Our results shed light on a new direction for performance-security
trade-offs for Spectre defenses.

The remainder of this paper is organized as follows. In Section 7.2, we
provide background information. In Section 7.3, we discuss the landscape
of existing Spectre defenses and point out blank spots. In Section 7.4,
we present Specfuscator, our Spectre defense mechanism. In Section 7.5,
we evaluate the performance and security of Specfuscator. In Section 7.6,
we discuss the context and implications of our work. We conclude in
Section 7.7.
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7.2. Background

This section provides some background information about speculative
execution attacks and the internals of the M/o/Vfuscator .

7.2.1. Speculative Execution Attacks

Modern CPUs extensively use out-of-order execution and prediction mech-
anisms to increase performance. Speculative execution uses branch pre-
dictions to advance the control flow speculatively. Branch prediction
mechanisms are implemented via different structures, such as the Branch
History Buffer (BHB) [6, 29], the Branch Target Buffer (BTB) [14, 29, 31],
the Pattern History Table (PHT) [15, 29], and the Return Stack Buffer
(RSB) [15, 30, 32].

Mispredicted branches are reverted on the architectural level, but not
on the microarchitectural level [29]. Hence, code that should not have
been executed architecturally still leaves microarchitectural traces, e.g.,
in various caches. By leveraging traditional side-channel attacks, these
microarchitectural traces can be brought into the architectural domain,
potentially recovering data that was not supposed to be accessed, i.e.,
secrets.

Kocher et al. [29] first discussed transient-execution attacks [10] using
speculative execution and demonstrated that conditional branches and
indirect jumps can be exploited to leak data. Subsequent work has then
shown that the idea can be extended to function returns [30, 32] and store-
to-load forwarding [18]. Canella et al. [10] then systematically analyzed
the field and demonstrated that the necessary mistraining can be done
in the same and a different address space due to some predictors being
shared across hyperthreads. Additionally, they also showed that many of
the proposed countermeasures are ineffective and do not target the root
cause of the problem. While the cache has been predominantly exploited
for the transmission of the secret data [10, 29, 30, 32], other channels have
also been shown to be effective, i.e., execution port contention [7].

To mitigate all these attacks, various proposals have been made by in-
dustry and academia. Canella et al. [9] analyzed the differences between
countermeasures proposed by academia and by industry, highlighting that
academia proposes more radical countermeasures compared to industry.
In general, the proposed mitigations either require significant changes
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Figure 7.1.: Branch instructions typically split up the control flow. Constant-
time cryptographic algorithms avoid branches (left) and instead lin-
earize the control flow (right), e.g., square-and-always-multiply [13],
turning the security-critical branches and basic blocks into one
large basic block. M/o/Vfuscator follows the same idea of lineariz-
ing the control-flow and uses one main execution loop, turning the
program into one large basic block.

to the hardware [25, 26, 53], require a developer to annotate secrets [17,
38, 42], introduce data dependencies [11, 37], or reduce the accuracy of
timers [33, 40, 47, 50].

7.2.2. M/o/Vfuscator

Turing completeness is a part of computability theory that describes
a set of rules or instructions that can be simulated on a single-taped
Turing machine. Dolan [46] showed that the x86 mov instruction is Turing-
complete. Based on this observation, Domas [12] invented the single-
instruction compiler M/o/Vfuscator . The M/o/Vfuscator patches the
Little C compiler (LCC) to use an emitter that only emits mov instructions.
M/o/Vfuscator is an x86 32-bit compiler and also only supports 32-bit
arithmetic operations.

The compiled program runs in a virtual machine, which basically runs like
a Turing machine. The entire program is branch-free and thus executed as
a single basic block, leading to a linearized control flow graph. Figure 7.1
illustrates the linearized control flow graph. Thus, the program is always
executed from start to end in a loop. To ensure the correctness of the
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program, a flag specifies whether an instruction should compute on the
target location or a dummy discard location. All instructions that are not
relevant for a specific iteration are discarded using this discard location.
Hence, although the instruction is executed, it has no impact on the current
behavior of the program. This technique is the same that is used to ensure
constant-time implementations of, e.g., cryptographic algorithms [13].

Note that this is similar to constant-time cryptographic algorithms, e.g.,
square-and-always-multiply [13], the program executes both branches and,
thus, always runs the algorithm from start to end in a loop.

Arithmetic operations, i.e., additions, multiplications, divisions, bitwise-
operations, are implemented using two-dimensional lookup tables. To
save memory. 32-bit operations are split into two 16-bit operations, and,
thus, only 16-bit lookup tables are required. By exploiting the addressing
modes of x86-mov, the first mov looks up the row for the first operand, the
second mov looks up the corresponding column for the second operand,
and the value is reported as result.

M/o/Vfuscator handles internal jumps to specific parts of the code using
a target register. M/o/Vfuscator installs two signal handlers for SIGSEGV
and SIGILL to enable branching [12]. At the end of the program, an illegal
instruction is emitted to trigger the SIGILL handler and jump back to the
start of the program. To perform external library calls, i.e., calling libc
functions such as printf, segmentation faults are used [12]. To adhere to
the x86 calling convention, the function’s arguments are pushed onto the
stack.

As the name indicates, M/o/Vfuscator can also be used as an obfuscation
technique. However, as Kirsch et al. [27] demonstrated, it is possible to
deobfuscate this technique with taint analysis.

7.3. Blank Spots in the Spectre Defense Landscape

Most Spectre countermeasures attempt to break different phases of Spectre
attacks [9, 10]. These phases are described in previous work as preparation,
misspeculation, access, encoding, leakage, and decoding.
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Preparation. Preventing the preparation phase can often be seen as
equivalent to disabling performance optimizations in the CPU. By dis-
abling either microarchitectural states or speculation at all, an attacker is
unable to prepare a Spectre attack. While disabling speculation has been
suggested as a mitigation [29], modern CPUs do not support disabling
speculative execution. Moreover, it can be expected that disabling specu-
lative execution results in a considerable slowdown. Similarly, disabling
the cache also has an unacceptable performance overhead as every memory
access has to be served from memory. Additionally, other microarchitec-
tural elements could be used as side channel in the absence of the cache [7,
10, 43].

Misspeculation and Preventing Access. Most focus so far was on the
main cause of Spectre attacks, the misspeculation phase, or the transient
access of secrets following the misspeculation. Intel, AMD, and ARM [1, 3,
23] prevent Spectre-BTB and Spectre-RSB by restricting how an attacker
can influence the predictors. For Spectre-PHT, serializing instructions
are recommended to stop speculation at security-critical branches [23].
However, this means that branches have to be identified and separately
patched.

Furthermore, it could be that memory barrier instructions are not fully
serializing [52]. To entirely protect an application, speculation barriers
are required for each branch that could be followed by cache fetches.
Adding memory barriers for each conditional branch can lead to runtime
overheads of up to 440 % [37]. Additional to that performance overhead,
Schwarz et al. [43] have shown that speculation barriers for each branch
do not suffice as other channels can be used to leak data, such as the AVX
unit or the TLB, as these barriers do not prevent interaction with these
microarchitectural elements.

Oleksenko et al. [37] introduced data dependencies to branch conditions
and the following instructions to force a stall if the branch cannot be
decided yet. Similarly, Carruth [11] proposed to use branchless code to
check loads, ensuring that the load is executed along a valid control-flow
path. One pre-requisite for this approach is that the hardware supports
branchless and unpredicted conditional updates of register values.

Schwarz et al. [42] and Fustos et al. [17] propose to annotate secrets and
propagate these annotations to the CPU to ensure that secrets are inac-
cessible during transient execution. Speculative taint tracking (STT) [56]
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uses light-weight taint tracking to taint not yet committed data and de-
lay instructions that use it. Similarly, NDA [51] prevents the execution
of potentially leaking instructions if they depend on a not yet retired
operation.

All of these mitigations keep the number of branches identical but ensure
that no leakage occurs by breaking the link between the misspeculation

phase and the subsequent access or encoding phases.

Other solutions attempt to add branches that are potentially less easy
to exploit [2]. Google proposed retpoline [48], a code sequence replacing
indirect branches with return instructions, to prevent Spectre-BTB. While
retpoline also adds more jumps to the program, these are direct jumps
and, thus, likely unexploitable. Hence, the total number of branches
increases, although potentially fewer are exploitable. Branco [8] proposed a
probabilistic alternative to retpoline, called randpoline, which is compatible
with Intel Control-flow Enforcement Technology (CET). This alternative
introduces a large number of indirect branches and randomly chooses one
of them, reducing the chance that an attacker can mistrain the actually
executed branch.

Encoding, Leakage, and Decoding. In these phases, the secret was
already accessed transiently. Preventing exploitation in these phases
would require ensuring that no covert channel exists between the transient
and the architectural domain. However, the way modern CPUs work, it
is unrealistic to assume that covert channels can be entirely prevented.
While proposals exist to limit the resolution of timers [50] or to build
microarchitectural shadow structures [25, 53] to squash the results on mis-
predictions and leave no microarchitectural traces in the cache. However,
these mitigations are typically incomplete [10].

Classification. While these defenses have different security properties,
depending on the phase they target, they have in common that specific
branches are either transformed into other branches, or that the flow from
mispredicted branch to leakage is interrupted. We classify the existing
Spectre defenses, as illustrated in Figure 7.2. From this figure, it becomes
apparent that most solutions sit in the same range of keeping the number
of branches identical, and some defenses increase the number of branches.
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Figure 7.2.: Previous Spectre defenses were either not changing the number of
conditional branches, but possibly adding more (direct) branches to
a program. The space of eliminating branches is largely unexplored.

Existing software-based countermeasures try to surgically modify con-
ditional branches or subsequent data access to prevent the exploitation
of misspeculation. However, as an alternative to preventing speculative
execution of conditional branches entirely [29], another possibility is to
eliminate conditional branches. In this work, we analyze this largely
unexplored mitigation technique of removing conditional branches, thus
also eliminating the root cause of Spectre attacks.

7.4. Specfuscator

In this section, we introduce the design of Specfuscator in the first part.
Then we discuss the security guarantees of Specfuscator and outline the
implementation.

7.4.1. Design of Specfuscator

Specfuscator is based on the work by Dolan [46] showing that the x86
mov instruction is Turing complete. Hence, it is always possible to trans-
form a regular application into an application that consists only of mov
instructions, and thus no conditional branches. This approach has been
implemented by Domas [12] as M/o/Vfuscator with the goal of obfuscating
applications and making them difficult to reverse engineer.
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The main idea is always to execute both code paths of every conditional
branch, similar to the constant-time square-and-always-multiply algorithm
for RSA [13]. Per conditional branch, a flag decides whether the calculated
results are kept and committed to the program state, or discarded by
specifying a dummy location as the target. Such an approach is also
considered secure for implementing side-channel resilient cryptographic
algorithms [13, 36, 55]. The advantage of this approach is that it can be
fully automated in the compiler.

M/o/Vfuscator leverages the code generation of the LCC compiler but
replaces the emitter for single instructions by a special emitter, generating
the corresponding assembly code. M/o/Vfuscator labels all branches and
uses a software-emulated target register to decide which of the branches
is currently executed. If the execution flag is set, all operations are
performed as specified in the program code. Conversely, if the flag is not
set, the results of the operations are discarded, similar as square-and-
always-multiply [13].

Branching is emulated using branch-free comparison using subtraction
and logical operations. Depending on the result of the comparison, the
corresponding flags (zero flag, signed flag, carry flag, and overflow flag)
are set, and the target location is selected. A flag specific to this approach
is the execution flag that can be changed by compare instructions. After
disabling the execution flag, the results of the subsequent instructions
are stored to a scratch location. If the instruction pointer (EIP) reaches
the target basic block, the execution is enabled again, and the results are
again made architectural.

Similar to the square-and-always-multiply loop [13], the code is always
executed in its entirety in a loop. Hence, the execution speed suffers
while secret-dependent operations, secret-dependent branches, and secret-
leaking misspeculation are eliminated. This design leads to a linearization
of the program flow. Therefore, the CPU does not need to predict the
outcome of branch instructions. If there are no branches in the program,
there can be no mispredictions and resulting pipeline stalls [19].

While the mov-based approach is already secure against Spectre attacks, it
introduces a considerable performance overhead. Arithmetic operations are
implemented via extensive use of two-dimensional arithmetic lookup tables.
For instance, a 32-bit addition requires 50 x86 mov instructions, which
use 16-bit lookup tables. To increase the performance of Specfuscator,
we do not solely rely on the mov instruction. As we only aim to prevent
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Spectre attacks, we do not implement arithmetic operations using movs.
Instead, we rely on the native x86 arithmetic instructions, as they cannot
be exploited using Spectre. In addition, we exploit the x86 addressing
modes to operate directly in memory instead of moving both operands
into registers. This optimization saves one additional mov instruction per
memory operation.

Another instruction that is safe with respect to Specter is the cmp in-
struction. Thus, Specfuscator directly uses the cmp instruction instead
of a subtraction for comparing two values. The required flag, e.g., the
execution flag, is then set via arithmetic and logic instructions. Figure 7.3
illustrates how Specfuscator emits branch-free code using mov instructions.

The only jump instruction in Specfuscator is the jump from the end of
the program to the top of the execution loop. In M/o/Vfuscator , this was
solved using an illegal instruction and a corresponding exception handler.
However, this causes a considerable performance overhead and might even
lead to misspeculation in the interrupt handler [44]. Hence, as a Spectre
attack cannot exploit a direct, unconditional jump, the illegal instruction
can be replaced via a direct jump to the top of the execution loop.

7.4.2. Security of Specfuscator

Specfuscator is a defense against Spectre attacks that exploit control-flow
misprediction, i.e., Spectre-PHT [29], Spectre-BTB [29], and Spectre-
RSB [30, 32], as classified by Canella et al. [10]. Straightline Spectre [4] is
a special case of Spectre-BTB and Spectre-RSB, where the CPU specula-
tively skips a branch and continue with the instruction directly after the
branch. Another Spectre variant, Spectre-STL [18], is a separate mech-
anism that relies on incorrect speculations for store-to-load forwarding,
i.e., it is a data-flow misprediction.

The idea of Specfuscator is that none of the control-flow mispredicting Spec-
tre variants (Spectre-PHT [29], Spectre-BTB [29], and Spectre-RSB [30,
32], including Straightline Spectre [4]), work if the corresponding control-
flow modifying instructions are not used at all. Specfuscator strictly
avoids these instructions and only permits direct, unconditional control
flow changes. As the only emitted branch is the unconditional branch at
the end of the program, adding a memory fence after this jump prevents
Straightline Spectre. Due to the unconditional nature of the branch, this
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Figure 7.3.: Branching is handled via a target value for each basic block. If
the target is reached, the execution flag is toggled, and the results
modify the program’s state. Conversely, until the target does not
match, the results are written to scratch locations.

memory fence is never executed architecturally, and has therefore no per-
formance impact. Hence, programs compiled with Specfuscator, by design,
cannot be susceptible to the above Spectre variants as the corresponding
instructions are not present in the binary. This is a very clear and strong
security guarantee that most other defenses cannot provide [10, 29].

Specfuscator is a software-only solution and does not require hardware
modifications like other proposed Spectre defense mechanisms [25, 26, 42].
Thus, it can even work in environments where other mitigations cannot
be applied, e.g., because lfence instructions are not serializing [52], or
patches are unavailable for other reasons.
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7.4.3. Implementation of Specfuscator

Specfuscator is a modification to the LCC C compiler [16]. The reason we
chose LCC and not gcc or clang is that we base the implementation of
Specfuscator on the open-source M/o/Vfuscator , as this compiler already
generates a branch-free binary based on the technique from Dolan [46].
M/o/Vfuscator itself is a patch to the current version (September 2020)
of LCC. However, we require several custom changes, as outlined in
Section 7.4.1. In contrast to M/o/Vfuscator , Specfuscator can use a
broader range of native instructions without sacrificing security. By
relying on arithmetic and logic operations, as well as complex addressing
modes, the amount of mov instructions is reduced heavily, i.e., for the
addition, we now have 3 instructions instead of 50 mov instruction. For
example, in a tiny AES program, the number of instructions is reduced
from 222 935 to 127 631, i.e., a reduction of about 43 %, when compiling
with Specfuscator instead of M/o/Vfuscator .

As all of our changes are in the code emitter of the compiler, this could also
be ported to a different compiler, such as clang. As Specfuscator is based
on M/o/Vfuscator , we can already adopt the control-flow-linearization
code from M/o/Vfuscator but also emit arithmetic and logic operations.
Divisions and modulo operations require additional handling, as they
can cause floating-point exceptions in case of a division by zero. We
handle those special cases using conditional mov (cmov) instructions to
ensure that we do not introduce conditional branches. The conditional
mov instructions, e.g., cmov, are not affected by Spectre, as they are never
predicted [20].

For comparisons, we cannot merely emit the x86 instructions instead
of the mov-based constructs, as M/o/Vfuscator uses its own internal
representation of CPU flags to select whether the computation results
of a branch are stored or discarded. Hence, to ensure correct branching
with e.g., , the cmp instruction, we need to update the internal flags in
a branch-free way. We achieve this by transferring the CPU flags to an
unused general-purpose register via the stack and using binary masks to
extract the required bits.

In total, we changed (added, removed, or replaced) 437 lines of code of
M/o/Vfuscator , which is about 10 % of the M/o/Vfuscator codebase.
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Figure 7.4.: Flush+Reload within a Specfuscator-compiled program works suc-
cessfully as intended.

7.5. Evaluation

In this section, we first verify the security of Specfuscator by compiling
and executing Spectre-PHT, Spectre-BTB, and Spectre-RSB gadgets.
Furthermore, we evaluate the performance of Specfuscator and compare it
to the original M/o/Vfuscator , LCC, and a modified clang version, which
emits lfences for each conditional branch, and a basic clang compiler
without Spectre mitigations activated. We compare each compiler on a set
of benchmark programs and compare the averaged runtime performance,
binary size, and compile time. The results of this evaluation are given
in Table 7.1 and Table 7.2. Our test system was equipped with Ubuntu
20.04 (5.4.0-42-lowlatency) running on an Intel i5-8250U CPU.

7.5.1. Security Evaluation

We demonstrate that it is impossible to successfully use an existing Spectre
proof-of-concept attack on Specfuscator compiled code. To verify that
the misspeculation is indeed prevented, we separately validate all other
Spectre attack steps. We add additional functionality to the compiled
binaries to obtain accurate time measurements with rdtsc and enable
flushing of a virtual address using the clflush instruction. This allows
us to accurately verify the cache encoding of the Spectre attack with a
Flush+Reload side-channel.

We verify that the cache covert channel in a compiled binary works exactly
as in a regular Spectre attack by creating a histogram of cached and
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uncached data. Figure 7.4 shows that it is still possible to distinguish
between cached and uncached data in a program compiled with Specfus-
cator. Therefore, cache-based side-channel attacks are still possible in
Specfuscator-compiled programs.

To validate whether Spectre is still possible, we use the 15 sample Spectre
gadgets from Kocher [28]. First, we evaluate that these gadgets indeed
sucessfully show Spectre attacks. We compile them using the unmod-
ified LCC and execute each gadget 100 000 times. For all gadgets, we
successfully leak data using Spectre.

For the security evaluation, we compile all sample gadgets using Specfus-
cator. We again execute each gadget 100 000 times on our test device, and
check whether the secret is leaked. As we do not observe any leakage on
our test device using any of the gadgets, we practically confirm that our
mitigation that should work in theory due to the absence of misspeculation,
also works in practice.

In addition, we port a Spectre-BTB and Spectre-RSB proof-of-concept to
32-bit and evaluate it on our unmitigated clang. Again, as expected, these
proof-of-concepts work on an unmitigated clang. When the programs are
compiled with Specfuscator, no indirect jumps, calls, or return instructions
are emitted. To experimentally show that Specfuscator indeed stops the
leakage for these attacks, we again compile them using our defense. We
execute the proof-of-concept implementations 100 000 times and do not
observe any leakage for either Spectre-BTB or Spectre-RSB.

7.5.2. Performance Evaluation

For the evaluation, we extend LLVM 10.0.1 with a new compiler pass
that runs just before the final code is emitted. In this pass, we analyze
every conditional branch using the analyzeBranch function and insert an
lfence instruction if this instruction is not already present. To mitigate
speculation on both sides of a conditional branch, we also emit an lfence

instruction in its fall-through basic block if this code path is not already
fenced. This compiler pass required changing or adding 125 lines of code
across 4 files. In addition to enabling our fencing pass, we enable the
retpoline mitigation for clang by adding the -mretpoline flag. As a
result, speculative execution is stopped for all conditional branches and
jumps, as e.g., , suggested by Intel [23].
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For our evaluation, we compare different programs, including crypto-
graphic implementations and real-world applications [12]. We compile
each program as a 32-bit binary since our Specfuscator proof-of-concept
only supports 32-bit. However, while we showcase our compiler for this
architecture, our approach is generic and is equally applicable to other
architectures as well.

We compile the same benchmark program in 5 different configurations.
Each test case is compiled with clang without any Spectre mitigations,
clang with lfences and retpoline active, the LCC, the unmodified M/o/V-
fuscator , and Specfuscator. To get stable benchmarking results, we fixed
the CPU frequency to 3.4 GHz and ran our test program on an isolated
core.

Run time

We use the runtime of the clang-compiled programs without mitigations
as a baseline to compute the runtime overhead. To measure the runtime of
the programs, we use the perf command-line tool. We run each test case
1000 times. For the individual test cases, we observe standard deviations
between 0.1 % and, for some cases, 3 %. The maximum value of 3 %
was observed in the case of clang. The reason for this higher standard
deviation might be speculative execution.

As shown in Table 7.1, the runtime overhead factor strongly depends
on the different tasks being executed. We gained a runtime speedup in
comparison to M/o/Vfuscator by a runtime factor of up to 50. For our
benchmark programs, we observe that the LCC has a runtime overhead
between 3 % and an overhead factor of 26 over clang. The overhead of
M/o/Vfuscator is substantially higher, and the overhead of Specfuscator
is in between. We observe the highest performance penalties in terms of
runtime for a tiny program that calculates the square root of 2. Also, the
modified clang reaches a maximum runtime overhead factor of 20.89. The
performance of M/o/Vfuscator and Specfuscator deteriorates, particularly
on programs where small amounts of code are executed a large number
of times, as the whole program has to be completely executed for each
iteration.

We leave it as future work to further optimize Specfuscator optimizing the
way how branches are performed. Partial control flow linearization could
be integrated as compiler optimization with a similar approach proposed
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Table 7.1.: Average runtime overhead factor of our benchmarks for the different
compilers compared to our baseline (clang). The baseline is given
in milliseconds on the right for the unmodified clang

Test
program

M/o
/V

fus
cat

or

Specf
usca

tor

Clang

(fe
nces

)

LCC
Clang

(basel
ine)

aes 424.17 221.53 1.31 1.17 1.13 ms
arcfour 36.86 5.18 1.01 1.14 0.81 ms
base64 27.12 8.95 1.19 1.15 0.80 ms
blowfish 129.41 40.79 1.26 1.14 1.10 ms
des 1046.20 520.47 1.15 1.04 0.93 ms
md2 85.57 62.73 1.07 1.20 0.82 ms
md5 18.30 4.71 1.03 1.13 0.80 ms
rot-13 2.20 1.46 1.02 1.24 0.76 ms
arithmetic 1.25 1.05 1.05 1.03 0.96 ms
crc32 7.80 3.45 1.24 1.17 0.88 ms
hello 1.10 1.11 1.00 1.04 0.89 ms
maze 310.03 88.98 1.10 1.13 0.97 ms
mersenne 4.12 1.31 1.02 1.13 0.80 ms
sqm 1.33 1.25 1.02 1.15 0.80 ms
nqueens 319.84 234.46 1.99 4.99 1.89 ms
prime 980.27 161.59 1.93 0.96 1.65 ms
s2 46085.82 981.20 20.89 26.64 0.71 ms
sudoku 656.91 149.69 2.15 1.17 1.13 ms

by Moll et al. [35]. The partial control flow linearization improved the
performance of the overall program by a factor of 146 %[35]. Furthermore,
we leave it as future work to extend Specfuscator to 64-bit architecture
or integrating a similar approach to LLVM. As LLVM has significantly
better optimizations than LCC, as can be seen in the benchmarks, porting
Specfuscator to LLVM will also improve its performance.

In addition to the runtime, we evaluate the binary size and compile time
of the different compilers. For this purpose, we compile each program
1000 times for our 5 compilers and measure the compilation time using
the perf command-line tool. Table 7.2 illustrates the averaged overhead
factor in terms of binary size and compilation time.
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Compile-time

Table 7.2 lists the compile-time and the binary size of our benchmark
programs. In comparison to M/o/Vfuscator , we reduce the compile time
by up to 46 %. The compile-time of M/o/Vfuscator and Specfuscator
depends on a part in how many instructions are needed to generate the
assembler. Thus, with the use of fewer instructions per operation, the
compile-time is halved in most cases for Specfuscator in comparison to the
original M/o/Vfuscator . As the results of Table 7.2 show, the compile-
time is about two times higher than with the clang compiler. For small
programs, the compile-time appears to be relatively constant for the
M/o/Vfuscator and also Specfuscator. While this is not problematic for
smaller binaries, compiling large software projects such as browsers or web
servers would take substantial amounts of time with Specfuscator. We
note that our approach of eliminating all conditional branches is extreme.
Still, it shows that solutions that eliminate conditional branches are not
infeasible, and less extreme solutions in this direction could maintain
higher performance levels.

Binary size

Stripping the binary reduces the binary size by 50 %, as it removes debug-
ging information. Hence, for a fair comparison, we strip all the binaries
to only compare the actual code footprint. Compared to M/o/Vfuscator ,
Specfuscator reduces the binary size by roughly 30 % This reduction was
achieved by removing most of the two-dimensional lookup tables used for
arithmetic operations. The binary size could additionally be reduced by
decreasing the size of the virtual stack, which is currently constant at
1.68 MB. As can be seen from Table 7.2, the binary size is about 280 times
larger for Specfuscator than for binaries compiled with clang and for
M/o/Vfuscator even 398 times. Again, this overhead is due to our extreme
solution, but it shows that solutions eliminating conditional branches are
not infeasible. Surprisingly, the programs compiled with LCC are smaller
than the programs compiled with the unmodified clang.
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Table 7.2.: Average compile time in ms and binary size in kB overhead factor
for M/o/Vfuscator , Specfuscator, and clang with active mitigations
compared to clang without active mitigations (rightmost column).

Test
program

M/o
/V

fus
cat

or

Specf
usca

tor

Clang

(fe
nces

)
LCC Clang

(basel
ine)

time size time size time size time size time size

hello 2.23 388.28 1.86 279.18 1.07 1.01 0.71 0.89 38.36 ms 13.62 kB
maze 3.93 394.09 2.12 274.96 1.05 1.01 0.63 0.86 46.80 ms 13.82 kB
mersenne 3.00 396.28 1.83 279.84 1.02 1.01 0.70 0.89 41.90 ms 13.63 kB
nqueens 2.39 386.75 2.05 278.22 1.17 1.01 0.75 0.88 40.19 ms 13.64 kB
prime 2.39 389.97 1.81 279.47 1.06 1.01 0.62 0.89 39.02 ms 13.64 kB
s2 2.87 395.22 1.89 279.72 1.00 1.01 0.78 0.89 39.34 ms 13.62 kB
sudoku 3.47 398.10 2.05 280.39 1.10 1.01 0.68 0.91 37.76 ms 14.00 kB
aes 4.80 218.69 2.95 151.15 1.20 1.00 0.53 1.01 101.89 ms 33.21 kB

7.6. Discussion

The goal of our paper is to clearly demonstrate the feasibility of branch
reduction up to complete elimination as a Spectre mitigation. While we
demonstrated the feasibility, we also identified the limitations of our ex-
treme approach. Due to these limitations, we do not consider Specfuscator
a real-world solution, but an important contribution as an explorational
study that yields interesting insights. Eliminating all branches to reduce
the susceptibility to Spectre has not been explored so far. Our solution
inherits the performance overheads of the underlying compiler (LCC and
its modification M/o/Vfuscator) that falls far behind the state of the
art performance-wise. The fact that it can still achieve on-par perfor-
mance for specific programs protected with state-of-the-art mitigations
with a state-of-the-art compiler shows that the elimination or reduction
of branches is a strategy to defeat Spectre that must be examined in
more detail. In particular, we see potential synergies with the compiler
community that explored the question of branch elimination in the past for
performance reasons. For instance, Moll et al. [35] developed a technique
to partially linearize the program flow by removing branches, improving
performance by 146 %. Exploring related techniques, even if they incur a
subtle performance overhead, may yield more efficient Spectre mitigations
in future compilers. Software-based solutions are especially important as
there is a lot of hardware without in-silicon fixes, and existing software-
workarounds are often expensive. While Intel recommends keeping the
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number of branches as low as possible to achieve the highest possible
runtime performance [19], actually reducing branches is a complex task.
Although branch elimination can boost the program’s performance, it
might also be exploited, as it has been demonstrated in the JavaScript
engine V8 [24, 45]. Another direction of research is to investigate the
susceptibility to control-flow hijacking attacks. Future work should evalu-
ate whether branch-less binaries, like those compiled with Specfuscator,
or branch-reduced binaries, could realistically mitigate such attacks and,
thus, provide control-flow integrity.

7.7. Conclusion

Speculative execution attacks, known as Spectre attacks, have gained sub-
stantial attention both in the scientific community and in industry with
a broad range of defense techniques proposed. In particular, in-software
defenses for commodity systems attempt to leave the program structure
as is, but defuse every potential Spectre gadget, e.g., by stopping the
speculation, or limiting value ranges. While these mitigations disrupt the
program flow on every conditional branch, they still contain every single
conditional branch instruction. In this work, we explore a new possibility
of mitigating Spectre attacks by using a branch-free compiler. Our miti-
gation is based on automatically linearizing the program flow through a
special compiler pass, eliminating all conditional and indirect branches.
We showed the security guarantees of this approach and evaluated the
feasibility by evaluating its performance in terms of its runtime. In addi-
tion, we discussed the compile-time and the binary size of this approach.
Furthermore, we verified that existing Spectre-PHT, Spectre-BTB, and
Spectre-RSB proof-of-concepts compiled with Specfuscator do not leak
secret data anymore. We observe that the performance overhead can be
very low, e.g., 5 %, for specific use cases, being on-par with state-of-the-art
mitigations. However, we also observed very high overheads of factor 1000
for other use cases. Our results indicate that the best performance-security
trade-off for Spectre defenses can be achieved by sticking to neither of the
extremes.
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Abstract

Memory utilization can be reduced by merging identical memory blocks
into copy-on-write mappings. Previous work showed that this so-called
memory deduplication can be exploited in local attacks to break ASLR, spy
on other programs, and determine the presence of data, i.e., website images.
All these attacks exploit memory deduplication across security domains,
which in turn was disabled. However, within a security domain or on an
isolated system with no untrusted local access, memory deduplication is
still not considered a security risk and was recently re-enabled on Windows
by default.

In this paper, we present the first fully remote memory-deduplication
attacks. Unlike previous attacks, our attacks require no local code execu-
tion. Consequently, we can disclose memory contents from a remote server
merely by sending and timing HTTP/1 and HTTP/2 network requests.
We demonstrate our attacks on deduplication both on Windows and Linux
and attack widely used server software such as Memcached and InnoDB.
Our side channel leaks up to 34.41 B/h over the internet, making it faster
than comparable remote memory-disclosure channels. We showcase our
remote memory-deduplication attack in three case studies: First, we show
that an attacker can disclose the presence of data in memory on a server
running Memcached. We show that this information disclosure channel
can also be used for fingerprinting and detect the correct libc version over
the internet in 166.51 s. Second, in combination with InnoDB, we present
an information disclosure attack to leak MariaDB database records. Third,
we demonstrate a fully remote KASLR break in less than 4 minutes allow-
ing to derandomize the kernel image of a virtual machine over the Internet,
i.e., 14 network hops away. We conclude that memory deduplication must
also be considered a security risk if only applied within a single security
domain.
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8.1. Introduction

Memory deduplication is a widely used technique to reduce memory
utilization by detecting physical pages with the same content and merging
them. Merged pages are marked as read-only and copy-on-write. If one of
the merged pages is modified, a copy-on-write page fault is triggered, and
the page is again copied to a new physical location. With the introduction
of Windows 8.1, memory deduplication had become a default feature [58].
On Linux, kernel-same-page merging is used by kernel-virtual machines
or if the madvise syscall is used with a flag indicating that the page is
mergeable.

Previous work demonstrated memory-deduplication attacks performed by
a local attacker in both local environments (i.e., local native code execu-
tion) and the cloud (i.e., local code execution in a virtual machine) [4,
50] exploiting page combining on Windows and kernel-same-page merging
on Linux. Memory-deduplication attacks can detect co-location in the
cloud [50], hide communication in virtualized environments [56, 57], finger-
print operating systems [39], fingerprint websites via JavaScript [15] and
break ASLR on Linux as well as on Windows by exploiting pages with
almost fixed content [4]. Bosman et al. [6] leveraged memory deduplica-
tion in combination with Rowhammer to escape from a browser sandbox.
Razavi et al. [41] used memory deduplication to facilitate Rowhammer
attacks on co-located virtual machines. Palfinger et al. [40] demonstrated
that memory deduplication can also be exploited in file systems like
ZFS. Lindemann et al. [26] demonstrated efficient fingerprinting via mem-
ory deduplication in co-located virtual machines. In concurrent work,
Kim et al. [21] showed a KASLR break on virtual machines on VMWare
ESXi. Following the recommendation of all these attack papers, memory
deduplication was disabled on Linux and Windows by default.

More recently, vendors switched to more fine-grained security policies.
Windows 10, for instance, again enables page combining by default but
restricts it to only deduplicate within a security domain but not across
security domains, stopping existing attacks. We also observe that the pop-
ular Ubuntu 20.04 Linux distribution enables kernel-same-page merging by
default for KVM-based virtual machines. Memory-deduplication attacks
with local code execution are considered out of scope in their threat model.
Systems without local code execution (native or in a virtual machine) for
the attacker can still be considered secure with these mitigation strategies.
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However, it remains unclear whether remote attacks without local code
execution are possible.

Our work faces three challenges which have to be solved to perform remote
memory-deduplication attacks:

• C1: Remotely amplify latencies for non-repeatable events. Remote tim-
ing attacks require high latencies in the side channel to deal with noisy
networks. Page-fault-type interrupts cannot be arbitrarily repeated
(e.g., for copy-on-write page faults, the page is copied and writeable
after the page fault). Hence, existing amplification techniques are not
directly applicable.
All previous memory deduplication attacks focused on cross-domain
deduplication. Deduplication within one domain is considered secure
(Windows re-enabled it for that reason). Intra-domain deduplication
is visible outside of the domain if the timing latency is exposed over a
web server or public API to the attacker domain.

• C2: Trigger and observe copy-on-write pagefaults in a victim domain
that shares no memory with any attacker domain. All previous mem-
ory deduplication attacks require local code execution (in native or
sandboxed code). Remote requests are usually not held in memory
for a long time. To speed up, the access of frequent data, in-memory
caching mechanisms like Memcached are used in websites.

• C3: Find remote request paths that do not only keep attacker-controlled
data in memory but also provide the attacker with control over alig-
nment and in-memory representation. To enable byte-by-byte leakage,
a target is required that allows alignment changes as described by
Bosman et al. [6].

In this paper, we solve the mentioned challenges and demonstrate the first
fully remote memory-deduplication attacks, just using requests
to an HTTP web server. Our attacks infer timing differences caused
by copy-on-write page faults on the server from the latency of network
requests and responses. We demonstrate attacks on default-configured and
fully updated Windows (native) and Linux (virtual machines) installations
using default-configured standard server software such as Memcached.
We measure the capacity of our side channel in a remote covert channel
scenario and achieve a transmission rate of 302.16 B/h in a local area
network and 34.41 B/h over the internet, which is faster than comparable
remote memory-disclosure channels (e.g., NetSpectre [48] achieved 7.5 B/h
in a local area network).
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We demonstrate three different remote memory-deduplication attacks,
illustrating the potential of our technique. In the first attack, we disclose
the presence of data on a remote server running Memcached. The in-
formation disclosure works by uploading data blobs into the key-value
store, freeing the deduplicated item, getting the same item reassigned,
and triggering a copy-on-write page fault by modifying the page’s content.
We also exploit this information disclosure channel for fingerprinting, i.e.,
which shared libraries are used on the remote system. Our attack detects
the correct libc version over the internet in 166.51 s.

In the second attack, we present a fully remote KASLR break on a virtual
machine running on a remote cloud machine. By targeting kernel pages
that contain kernel addresses but have all remaining bytes of the page
fixed, we can successfully derandomize the kernel offset of a Linux virtual
machine. We show that we can not only mount this attack in a local
area network setting using HTTP/1 but, moreover, leverage HTTP/2 to
successfully break KASLR on a server that is 14 network hops away within
4 minutes. We emphasize that vendor responses to local KASLR breaks
are often that KASLR is only meant as a mitigation for remote attacks.

In a third attack, we disclose database records byte-by-byte from a Mari-
aDB database server with an InnoDB storage engine. Our attack works
by crafting requests that create byte misalignments within target pages,
allowing byte-wise content guessing. This attack is particularly dangerous
as it leaks attacker-unknown memory contents from a remote server, simi-
lar as in powerful Spectre attacks [23, 48]. We can leak 1.5 B/h in a local
area network.

We conclude that memory deduplication must also be considered a security
flaw if only applied within a security domain and even if local attackers
are excluded from the threat model. As our attacks are full remote
attacks, we emphasize that the remote attack vector has to be mitigated
as well. Consequently, we responsibly disclosed all of our attacks to the
corresponding vendors and work with them on finding mitigations before
the public release of this paper. We will open-source our tools on GitHub
with the conclusion of the responsible disclosure

1
.

Responsible Disclosure. We responsibly disclosed our findings to Mi-
crosoft, Red Hat, Canonical, and AWS, on February 8th, 2021. The issues
are tracked under CVE-2021-3714.

1
https://github.com/IAIK/Remote-Page-Deduplication-Attacks

https://github.com/IAIK/Remote-Page-Deduplication-Attacks
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Contributions. The main contributions of this work are:

1. We present the first fully remote memory-deduplication attacks and
show that these must be considered a security flaw even if only applied
within a security domain.

2. We show that we can remotely fingerprint shared libraries to infer the
exact versions via Memcached in-memory databases.

3. We present a fully remote KASLR break on a Linux virtual machine
running in the cloud within only 4 minutes.

4. We demonstrate a fully remote byte-by-byte memory disclosure attack
on a MariaDB database server with an InnoDB storage engine, leaking
1.5 B/h.

Outline. The remainder of the paper is organized as follows. In Section 8.2,
we provide the required background about memory deduplication and
remote timing attacks. In Section 8.3, we state a threat model and provide
an attack overview. In Section 8.4, we present the attack primitives
that we use for remote memory-deduplication attacks. In Section 8.6, we
evaluate the performance of our remote memory-deduplication attacks in
three case studies on Windows and Linux, targeting Memcached, MariaDB
(with InnoDB), and the Linux kernel. In Section 8.7, we discuss the results
and state-of-the-art mitigations for remote memory-deduplication attacks.
We conclude in Section 8.8.

8.2. Background

In this section, we provide background on memory deduplication, memory-
deduplication attacks, and remote timing attacks, as well as Address Space
Layout Randomization.

8.2.1. Memory Deduplication

Sharing memory is not only crucial for inter-process communication but
also to reduce memory utilization and cache pressure. Modern operating
systems use different techniques to use shared memory whenever possible.
For instance, when creating a new process with fork(), the memory is
marked as copy-on-write, meaning that it is first shared between parent
and child process and only copied (i.e., duplicated) when one of the
processes attempts to write to it. This is implemented by marking the
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memory read-only and raising a page fault upon a write access. Another
example is the loading of any type of file (including, e.g., a program or
library binary files). The operating system keeps files in the page cache
and maps them into all processes that request access.

Neither of these approaches leads to the deduplication of identical but
dynamically generated memory pages. Hence, operating systems have
introduced content-based memory deduplication, which regularly scans
the entire physical memory for pages with identical content. All but one
of the identical pages are released, while the remaining one is marked
as copy-on-write. Content-based memory deduplication has traditionally
been applied across all security domains on all major operating systems.
On Windows, the mechanism is called page combining [58] and kernel
same-page merging on Linux [3]. However, security research has revealed
that this enables a range of attacks, as we discuss in the next sub-section.

8.2.2. Memory-Deduplication Attacks

In a memory-deduplication attack, the attacker first generates candidate
pages for deduplication. If the attacker guesses the content of a page in
memory fully correctly, it is deduplicated. Until the deduplication took
place, the attacker repeatedly writes to the candidate pages (without
changing the content). As soon as the deduplication took place, this
triggers a copy-on-write page fault, increasing the access latency drastically.
Hence, the access latency reveals whether a victim process had a page
with the exact same content, i.e., memory deduplication forms a content-
probing oracle.

The first memory-deduplication attack, demonstrated by Suzaki et al.
[50], was used to detect applications running in other virtual machines.
Owens et al. [39] also exploited memory deduplication to fingerprint the
operating system version via unique pages per operating system in virtual
machines. Gruss et al. [15] showed that memory-deduplication attacks
are possible from JavaScript running on a website opened in a browser.
Barresi et al. [4] demonstrated that it is possible to break address space
layout randomization (ASLR) on both Windows and Linux using memory
deduplication. Razavi et al. [41] exploited memory deduplication to
perform Rowhammer attacks on applications in virtualized environments.
Bosman et al. [6] used memory-deduplication attacks to create more
sophisticated exploits and used the ASLR break via memory deduplication
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to create an end-to-end JavaScript exploit which leverages Rowhammer
to achieve arbitrary memory read and write. Oliverio et al. [38] proposed
a mitigation against active memory-deduplication attack called VUsion,
which enforces same behavior when accessing shared and non-shared pages,
a write-xor-fetch policy, and random memory allocation. Lindemann et al.
[26] showed another fingerprinting attack to detect co-location in virtual
machines.

Palfinger et al. [40] showed that memory deduplication can also be lever-
aged in file systems like ZFS to fingerprint the operating system in the
cloud of co-located machines. In concurrent work, Kim et al. [21] demon-
strated a KASLR break on VMWare ESXi.

8.2.3. Remote Timing Attacks

Timing attacks were heavily researched in the last two decades. Since net-
work connections are getting more and more stable, at higher transmission
rates, as well as lower and more consistent latencies, remote timing attacks
have become increasingly interesting for attack research. Brumley and
Boney et al. [7] demonstrated that it is possible to extract SSL private keys
over a local area network. Acıiçmez et al. [1] attacked AES via a remote
cache based attack. In 2009, Crosby et al. [10] showed the possibilities
of remote timing attacks and how to reliably determine the number of
requests required to distinguish certain timing differences over the network.
There were several remote timing attacks on AES [2, 20, 47, 59] following
Bernstein’s idea of attacking AES [5]. Van Goethem et al. [51] exploited
timing side channels in browsers. Irazoqui et al. [18] showed that it is
possible to exploit cache timing differences in TLS in a local area network.
Van Hoef et al. [53] leveraged TCP windows to observe the exact size of a
cross-origin resource. Van Goethem et al. [52] showed that remote timing
attacks can be performed over the Internet by exploiting concurrency in
HTTP/2 and observing the order the packets return, which depends on
the server-side timing, instead of the client-side timing. Kurt et al. [25]
showed that Data Direct I/O can be used in combination with Remote
Direct Memory Access to spy on keystrokes during SSH sessions.

More closely related to our work is Schwarz et al. [48], who showed that
Spectre attacks are possible over the network if certain gadgets exist on
the target system. Similar to the most powerful attacks we present, they
can leak arbitrary data from an execution context. They achieve a leakage
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rate of up to 7.5 B/h, which can be sufficient to leak a cryptographic key
over the time frame of multiple hours.

8.2.4. Address Space Layout Randomization

To exploit memory corruption bugs, the knowledge of addresses of specific
data is often required since address randomization is applied in both user
space and kernel space. Over the past years, different side-channel attacks
allowed to reduce the entropy of the randomization or to break it entirely.
Hund et al. [17] measured the execution time of page-fault handling to
observe which kernel addresses are mapped and thus cached in the TLB.
Jang et al. [19] used hardware transactional memory to observe the same
effect. Other software-based side channel attacks exploited predictors [12,
27], side channels introduced by mitigations against other attacks [9], the
power consumption of the processor [28], and other microarchitectural
properties [13, 16, 24], even from JavaScript [8, 14]. As a consequence of
these local attacks on KASLR, operating system vendors but also parts
of the academic community considered KASLR only as a defense against
remote attackers. In remote attacks, KASLR indeed is still considered
a valuable line of defense since the attacker cannot as easily probe the
address space as with local attacks.

8.3. Threat Model & Attack Overview

In our threat model, the attacker has no ability to execute code on the
target machine: not natively, not in a virtualized environment, and also
not via JavaScript [6, 15] or another scripting language. However, the
attacker can provide attacker-controlled content to the remote target, e.g.,
a network request the attacker sends to the host with content the attacker
controls.

We assume that the victim keeps the attacker-controlled content in RAM.
This occurs, for instance, if the attacker sends network requests that
are cached in request pools, or binary large objects provided to a web
application and later on stored in a database or cached in a buffer.

We assume that memory deduplication techniques are active on the victim’s
machine. We emphasize that this is the case under default settings on
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Attacker Victim

Page A

Page B

1. Send data with same content as page A to server

2. Fill page B
and keep it in

RAM

3. OS: Deduplicate A and B

4. Update attacker-controlled page B

5. Write to B

6. Measure response time

Victim’s RAM

Figure 8.1.: Overview of a remote memory-deduplication attack.

current Ubuntu Linux installations (kernel-same-page merging for virtual
machines) and on current Windows installations (page combining).

We make no assumptions about software bugs, for instance, memory safety
violations in the applications we analyze.

Attack Overview. Six steps are required to perform a remote memory-
deduplication attack as illustrated in Figure 8.1. First, the attacker sends
a request to the victim with a page of data (page B) containing the
same content as a page already present in memory (page A). Afterwards,
the attacker waits for some time until the two pages are merged by the
operating system and point to the same physical address. Next, the
attacker updates the attacker-controlled data and triggers a page-fault on
the victim application. Depending on the response time of the victim, the
attacker observes whether the page was deduplicated or not.

Difference to already presented attacks. All of the previous presented
attacks [4, 6, 15, 39, 50] require local code execution via a native binary
or JavaScript and co-location to the victim’s machine. Remote memory-
deduplication attacks extend the scope by enabling attacks on remote web
servers by exploiting an API that allows uploading of attacker-controlled
data and place it into the main memory such that it might be deduplicated.



8.4. Attack Primitives 175

Comparison of state-of-the-art memory deduplication attacks to our work
is listed in Table 8.1. While some of the techniques shown by previous
work are similar, we solved those challenges for memory deduplication
attacks in the context of a remote attacker. As evidenced by other fully
remote attacks [48, 52], specific timing requirements and the applicability
to many-hop internet connections, remain a challenge that is only solved
for specific cases.

8.4. Attack Primitives

In this section, we describe our basic attack primitives and define the
requirements for a remote attacker to perform a fully remote memory-
deduplication attack without execution of any attacker-controlled code on
the victim system.

The main primitives for our attack are memory deduplication being
enabled, a web service/API that lets a remote attacker read/modify data
stored in RAM and an accurate remote timer that allows distinguishing
the round-trip time of the network packets.

8.4.1. Memory Deduplication

Page combining. Page combining was introduced in Windows 8.1. On
Windows, a special kernel thread scans over the whole memory to detect
pages that have identical content [58]. This scan is triggered about every
15 minutes on Windows 10 [58]. If pages with identical content are found,
the pages are combined to a single page to save memory. The page-table
entries of the pages then point to one of the two pages, which is then
shared across processes and marked as read-only and copy-on-write. When
writing to this shared page, a copy-on-write fault occurs, and a new copy
of the page is created for the writing process [58].

Page combining can easily be disabled via the Windows registry or using
Powershell, e.g., using the Disable-MMAgent command. Page combin-
ing was temporarily disabled for security reasons after several memory-
deduplication attacks were discovered [4, 6, 15]. However, page combining
was re-enabled on Windows more recently and is active on desktop ma-
chines by default, as well as on server machines if the full terminal server
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Table 8.1.: Comparison of state-of-the-art memory deduplication attacks.
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role is enabled. In addition, a Windows 10 process has the possibility to
disable page combining [35].

We observed this effect by checking all terminal server options in Windows
2016 (Version 1607, Build 14393.693) and Windows Server 2019 (Version
1809, Build 17763.737). We also empirically validated that for Windows
10 Professional 20H2 19042.746 and Windows 10 Home 19041.746 page
combing was active by default. On Microsoft’s Azure Cloud [36] it is also
possible to acquire such Windows Server VMs with this configuration. We
created a Windows 2019 Server (Version 1809, Build 17763.1697) and can
also confirm that page combining is enabled after setting the full terminal
server role. On Windows, it is also possible to force page combining using
the RtlAdjustPrivilege and NtSetSystemInformation functions.

Linux Kernel Same-Page Merging Kernel-Same-Page Merging (KSM)
is the counterpart of page combining on Linux [3, 42]. KSM is enabled and
mainly used for Kernel Virtual Machine (KVM) virtualized machines, for
instance, on Red Hat Linux [42]. On Ubuntu 20.04, we observed that when
qemu-system-common with KVM support is installed on a host machine,
KSM ENABLED is set to AUTO in /etc/default/qemu-kvm, enabling KSM
per default for non-virtualized instances. We also set up an Ubuntu 20.04
server image and observed the same behavior after installing QEMU.
Like on Windows, a kernel thread scans over the memory and merges
pages with identical content to a single page, which is then marked as
copy-on-write [42].

On Linux, only pages are merged that are marked as mergeable, i.e.,
using the madvise syscall and setting the MADV MERGEABLE flag [3]. This
is the default for pages of KVM virtual machines. The user can configure
how many pages should be scanned per invocation (pages to scan). The
default value on a Ubuntu 20.04 is 100 pages to scan in a time interval
of 200 ms. Therefore, in the optimal case, up to 500 4 kB pages can be
deduplicated per second. Figure 8.2 illustrates the required time for a
single page being deduplicated, with a different number of pages to scan
set, and the default value of 200 ms for sleep millisec. We evaluate the
deduplication time for a single page depending on the scanned pages on a
remote server equipped with an Intel Xeon E3-1240 running Ubuntu 20.04.
However, it is recommended to increase the number of pages to scan to
increase the deduplication performance [49]. The tool KSMtuned sets the
time interval per default to 10 ms and increases pages to scan to 1250 [42].
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This would lead to a maximum 512 MB being deduplicated per second.
We asked a cloud provider, which hosts multiple hundred thousand
websites, for the KSM config used in production. The cloud provider uses
a configuration of sleep millisecs=30,pages to scan=500, leading to
at maximum 65.84 MB (16500 pages) being deduplicated. The average
time after a single page is deduplicated with that configuration is 34.57 s
(n = 10, σ = 6.3%).

8.4.2. Service/Web API.

We assume that the victim machine provides network-accessible services,
e.g., a REST API, enabling users to store and modify data blobs. There
are no restrictions in the way these data blobs are controlled, i.e., the user
could either upload and replace files or send strings to the server, as long
as the memory location of the data blob does not change.

8.4.3. Remote Timer.

To get the best possible low-latency timing information, we use the hard-
ware timestamps from the network interface card. We measure the timing
difference between the last packet sent and the first response byte received
from the server (tcp flags=PUSH,ACK).

The victim side (which the attacker cannot control) runs under default
configuration. However, on the attacker side (that is under full control
of the attacker), we disable the following optimizations in the Linux
network parsing sudo ethtool -K enp3s0 tso off gso off gro off.
These options disable offloading of TCP packets to the network interface
card. Offloading might influence the timestamps on the attacker (receiver)
side. We observed for some network interface cards that due to receiver
side packet coalescing, the TCP receive timestamp of the first received
packet might be overwritten. To ensure that no coalescing happens, we
developed a kernel module which disables packet coalescing on the receiver
side, for network cards which have this problem.

Network Timestamps. We found that one of the bottlenecks of remote
attacks is the limited number of HTTP requests which can be sent using
a simple HTTP requests library like pyrequests. Therefore, we use
asynchronous IO mechanisms to increase the number of requests per
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Figure 8.2.: The deduplication time of a single 4 kB-page strongly depends on
the number of pages to scan (sleep millisecs=200).

second. Furthermore, we observed that remotepagededup:Wireshark’s
TCP-field tcp.time delta reflects the timing difference between copy-
on-write pages and non copy-on-write pages best. This field calculates
the timing difference between two captured packets. Compared to the
network timestamp read from the NIC, we require only 20 requests instead
of 40 to distinguish 16 overwritten copy-on-write pages over 14 hops in
the internet to build a histogram.

8.4.4. Attack Setup.

For all our case studies, we use the following setup for our local and remote
scenario.

Local Scenario. The local victim machine uses an i7-6700K processor
with Ubuntu 20.04 (kernel 5.4.0) and runs QEMU 4.2.1 with KVM support
enabled and virtualization extensions enabled. Co-located in the same
local area network, we have our attacker machine, which also uses an
i7-6700K processor and Ubuntu 20.04 (kernel 5.4.0). For the Linux setup,
we host a virtual machine with KVM running Ubuntu Server 20.04 LTS
(kernel 5.4.0-53-generic).

Remote Scenario. In addition, we used a remote Linux server by re-
motepagededup:Equinix [44], running on an Intel Xeon E3-1240 CPU. We
installed the same virtual machine on the Linux server. For our Linux
machine, which was located in Amsterdam, we observed 14 network hops.
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Figure 8.3.: Timing distribution of a single deduplicated page of a virtual
machine in a local area network scenario on Linux KVM (n = 1000).

We created a virtual machine on Microsoft Azure of size Standard D4s
v3 [36] and set up a Windows Server 2019 (Version 1809, Build 17763.1697)
with page combining enabled. We observed 28 hops, using the nmap
traceroute command, between our network and the Windows 2019 server
virtual machine, which was located in Amsterdam. We use the same
attacker machine from our local setup to perform the internet attacks.

Settings. To estimate the highest possible capacity of our remote covert
channel, we try to reduce the noise as far as possible, i.e., by fixing the CPU
frequency of the KVM virtual machine. To enable full scans on a moderate
CPU utilization, we set the value of /sys/kernel/mm/ksm/pages to scan

to 100 000. The /sys/kernel/mm/ksm/sleep milliseconds remains at
the default value of 200 ms. Furthermore, we set the CPU performance
governor to performance using the cpupower tool to avoid noise from
wake-up delays. We later on use the default configuration of Ubuntu,
Windows, and the cloud provider to calculate the leakage rates for the
cases studies.

Evaluation. For a single page, we measure a local timing difference
directly in the virtual machine (KVM) and observe that the average local
timing difference between a regular write memory access and a memory
access causing a copy-on-write page fault is 7209.3 ns (n = 100, σCOW =
26.23%, σNOCOW = 29%) using a local timer. We evaluate the timing
difference in our local area network and on the internet using a simple
HTTP server with a key-value store. Figure 8.3 illustrates the timing
difference for a single page accessed with a copy-on-write page fault and
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Figure 8.4.: Timing distribution of a single deduplicated page of a virtual
machine in the internet(14 hops) (n = 1000).
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Figure 8.5.: Timing difference between amplified pages.

a normal write access in a local area network. In the local area network,
we observe a mean timing difference of 4353.91 ns (n = 1000). Figure 8.4
shows the timing difference for a single page accessed with a copy-on-
write page fault and a normal write access from our Linux server on the
internet (14 hops). While those two distributions overlap, they can be
clearly distinguished in the mean respectively median values if enough
samples are taken. In addition, the timing difference can be amplified by
overwriting multiple copy-on-write pages in a single request.

Amplification. In the following paragraph we solve C1: (Remotely am-
plify latencies for non-repeatable events.). A copy-on-write page fault can
be amplified if multiple pages belonging to the same semantic entity (i.e.,
pages of an image file) get duplicated at the same time [15]. Therefore, we
can amplify the timing difference between multiple deduplicated pages by
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Figure 8.6.: Success rate of the classifier using the box test with a different
number of deduplicated pages (Rx).

sending a single request, writing to those which trigger the copy-on-write,
and responding back. To evaluate the timing differences of multiple copy-
on-write page faults, we evaluate a different set of pages, which triggers
the page fault. We define a test set in our local KVM machine with a test
set of 1, 8, 16, 32, 64, and 128 deduplicated pages and measure the average
timing difference between triggering a copy-on-write page fault and a
regular write access. We repeat the experiment 100 times and calculate
the difference between the average times, which is plotted in Figure 8.5.
We can see that there is a linear increase in terms of the timing difference
with the increase of the number of deduplicated pages. For instance, with
8 pages, we get an average timing difference of 13 610.82 ns and with 16
pages, it is on average 22 946.14 ns.

Next, we evaluate the effect of amplification in our local area network setup
with KVM. We use the term amplification factor to indicate the number of
additional pages used to amplify the signal. We sample 1000 times and fit a
CDF(cumulative distribution function) for each of the amplification factors
(1, 8, 16, 32) and randomly sample from the CDF. To discover the number
of requests required to achieve an accuracy higher than 95% percent, we
perform the box test by Crosby et al. [10]. Figure 8.6 illustrates the
number of network requests required to achieve a certain success rate for
a different number of pages deduplicated by the server. In this idealized
setup, we observe that 10 requests with an amplification factor of 8 are
enough to achieve a 95% confidence of distinguishing write accesses on a
deduplicated page (incurring a page fault) and a non-deduplicated page
in a local area network if amplification is used. The number of requests
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required is in a similar range for the local area network observed by Van
Goethem et al. [52].

C1

Remotely amplify latencies for non-repeatable events.

We showed the applicability of memory-deduplication attacks within
the same security domain. We can amplify the timing differences for
the copy-on-write page faults arbitrarily by leveraging the deduplica-
tion of multiple pages belonging to the same semantic entity. If the
attacker is in control of overwriting the data, multiple copy-on-write
page faults increase the latency.

R/W bit stays cleared. On Windows and Linux with page combining
respectively kernel-same-page merging, we observe that when a page is
deduplicated, and a write access occurs to one of the corresponding virtual
pages, the remaining mappings of the same physical page remain marked
as copy-on-write. We empirically validate this in an experiment, where
we first map two pages A and B with identical content and wait for
deduplication. We then write to page A and thus trigger a copy-on-write
page fault. Subsequently, we analyze the R/W bit of the page-table entries
for both pages and see that the R/W bit remained cleared for page B.
This observation is especially useful when the attacker can align data, as
was shown by Bosman et al. [6]. In Section 8.6.3, we exploit this behavior
to amplify a single copy-on-write request via Memcached.

8.5. Remote Covert Channel

For our evaluation on both Windows and Linux, we first create a covert
channel using our remote memory-deduplication channel. For this pur-
pose, we implement a small HTTP/1.1 server in C++ to maximize the
performance. We evaluate this attack on a local-area network with a
hardware switch between the attacker and the victim.

Capacity. We build a covert channel to measure the performance of our
remote memory-deduplication attack in a local area network scenario. The
victim system for our transmission hosts a website that allows storing and
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updating files. The website keeps the files in in-memory storage, i.e., in
RAM.

The sender and receiver upload an identical large file to the website hosted
on the victim system. Both use a 4 kB page in this large file to encode a
‘1’-bit. To transmit a ‘1’-bit, the sender puts the same page into RAM by
updating the file via the website. The page is deduplicated with the page
in the receiver’s file. Conversely, to transmit a ‘0’-bit, the sender modifies
the page in its file such that it is not deduplicated. The receiver sends
a network request that either triggers a copy-on-write page fault or not.
With measured round-trip time, the receiver distinguishes between a ‘1’
and a ‘0’. The transmission can be parallelized in our setup by storing
multiple bits at once and evaluating them in parallel.

Local Area Network. We transmit a random secret that is 8 bytes long,
and repeat the experiment 100 times. On each repetition, we re-randomize
a new 8 B secret. We observed that the Python capturing library has
problems correctly parsing the packets when performing too many requests
asynchronously on our webserver, we always leak 2 bytes (16 bit) in parallel
for stable results. Between the send and receive process, a delay of 3 s was
used to wait for deduplication.

In our Linux setup using amplification of 16, we achieve an overall perfor-
mance of 302.16 B/h (n = 100, σ = 5.81%), with an error rate of 0.6 %.

Internet. We run the same experiment as for the local area network. On
Linux, we used 20 requests per bit and used an amplification factor of 16
pages. On Windows, we used 20 requests per bit and an amplification
factor of 32 pages.

On the Linux server, we achieve an overall performance of 34.41 B/h
(n = 100, σ = 5.87%) with an error rate of 0.83 %. On the Windows server,
we use constant triggering of memory deduplication and a delay of 50 ms
and achieve an overall performance of 26.64 B/h (n = 100, σ = 0.69%)
with an error rate of 0.18 %. We use this number to calculate the timing
for the actual wait time on Windows of 15 minutes until the deduplication
succeeded, which is 0.4 B/h.

Using the same methodology as state-of-the-art work [4, 6], we simulate the
covert’s channel performance for the default configuration of 100 pages -
to scan on Linux. As it takes 596.9 s on the remotepagededup:Equinix
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server to perform a full scan, the covert channel’s performance shrinks
down to 0.59 B/h. For the provided numbers of the cloud provider, the
covert channel would achieve 20.62 B/h. These numbers are in a higher
range as previous work, with the additional overhead of TCP, compared
to the UDP sockets used in a similar attack scenario [48]. The other
remote timing attacks did not provide concrete numbers on their covert
channel [1, 2, 20, 47, 52, 59].

8.6. Case Studies

In this section, we evaluate three case studies and demonstrate what
types of attacks are possible with remote memory-deduplication. First,
we demonstrate that we can exploit remote memory-deduplication in
Memcached to fingerprint the system, including the operating system. We
successfully detect the correct libc library over the internet in 166.51 s.
Second, we demonstrate a fully remote KASLR break by exploiting remote
memory-deduplication within 4 minutes. Third and finally, we demonstrate
how to leak database records byte-by-byte from InnoDB used in MySQL
and MariaDB. In the following subsections we show how to solve C2, and
C3.

8.6.1. Memcached

Memcached is a fast in-memory database offering a key-value store for
applications [34]. The memory is managed using a slab allocator. A slab
consists of a single or multiple memory pages, which are contiguous in
physical memory. Memcached always allocates a 1 MB region and splits it
into smaller chunks of equal size [34]. Chunks or objects with a similar
object size get assigned to a certain slab class. For instance, if a slab
class is 64 B, the 1 MB page is split into 16 384 chunks. Newly inserted
data is assigned to the smallest slab class that the data fits in [34]. This
means a certain slab class contains objects of a certain size and assigns the
objects to a chunk. A key-value pair is managed by the item structure, a
linked list that contains the size of the key, the value of the object, and
some more metadata [34]. Each slab class has a free list, which is a linked
list [34]. If an item gets freed, its former location is moved to the head of
the free list.
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Memory Management. The key-value pairs are stored contiguously in
memory, which is ideal for triggering memory deduplication. We analyzed
and profiled the source code of Memcached to check which functions are
used and how the memory allocation works internally. In contrast to our
expectations, Memcached does not perform an in-place replacement of
the value to update. Even with the same key used in memcached set and
memcached replace operations, a new location is assigned to the updated
value. This new location is either an available free slab item from the
head of the free list (do slabs alloc) or a new slab item.

After all input data from the new item is read, the old item is unlinked, and
the new location linked for the item. The old location is freed and inserted
to the head of the slab’s free list (code path is from complete nread →

do item link). If a fixed memory size is reached, a least-recently-used
(LRU) eviction policy is applied on a slab-base [11] This means that “old”
items are replaced by more frequent items in a certain slab class.

Attack.

Our basic remote memory-deduplication attack on Memcached works as
follows on Linux and Windows: First, the attacker places the targeted
pages into the key-value store with a specific identifier. Then, the attacker
waits some amount of time (delay) such that the pages are deduplicated.
The deduplicated content can be for instance a static unique binary page
of a specific version of the C standard library or other static binary pages
in the system. After the delay, the attacker creates a new dummy item
with the same key, which puts the deduplicated target page on the free
list of Memcached. Then, the attacker updates the same item, which
causes a copy-on-write page fault on the deduplicated page which is now
overwritten.

Alignment. In general, it is not guaranteed that allocating memory with
malloc internally uses mmap for a specific allocation size (this may depend
on the libc variant, i.e., glibc MMAP THRESHOLD is 128 kB,system
configuration, and operating system versions of the victim system). Thus,
it is also not guaranteed that the allocated 1 MB region is aligned to any
specific offset. Using mmap would ensure a page alignment, meaning the
page offset would always be 0. However, in our experiments, we observed
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that malloc always used mmap internally for the 1 MB allocations on a
default configured Ubuntu Linux installation.

It is also not guaranteed that the attacker inserts the first item in the slab
class, which also causes an unknown alignment as also other chunks might
be inserted on the 1 MB page. To overcome this limitation we propose a
method to generate chunks of all different sizes possible for a slab class.
We calculate all possible offsets the chunk could have on the page for a
certain slab class. These possible offsets can be computed for each possible
chunk per page i as offset:

(malloc offset + i ⋅ chunk size + item header size

+key size) mod 4096

where the key size is attacker-controlled, the chunk size depends on
the slab class, malloc offset = 16 and the size of the item header is
defined as item header size = 56. Hence, to overcome the alignment
issue, we use the same page with the different offsets to cover all possible
alignments, which is guaranteed to include the correct alignment required
for deduplication.

LRU. In a real-world application, Memcached can be expected to be
heavily used by other users as well. However, we still need to keep the
data inside the data store. We achieve this by frequently accessing the
data using GET requests on the service to avoid being evicted by the
LRU eviction strategy. Note that this does not trigger copy-on-write page
faults as we only read the data but do not modify it. We discuss the
eviction in more details in an attacker scenario in Section D.

Evaluation. We evaluate our attack on Memcached 1.6.8 and connect to
the Memcached service using UNIX sockets. We evaluate this scenario
using a PHP site (version 7.4.3), which is hosted on an Nginx server
(version 1.18). Our evaluation uses the local area network setup, and we
also run on a Linux server on the internet 14 hops away. Our victim server
and attacker setup are the same as described in Section 8.5.

We alternate between pages that do not trigger a copy-on-write page fault
and pages that trigger a copy-on-write page fault due to deduplication.
In addition, we alternate the order to avoid a potential bias, which could
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Figure 8.7.: Histogram of the network requests in a local area network and in the
internet setup using 16 pages to amplify the results in Memcached.

be introduced by a fixed request order. In total, we perform 1000 HTTP
requests. Figure 8.7 shows the timing differences we observe in this setup.
We can see that it is easy to distinguish between deduplicated pages and
non-deduplicated pages.

Libc Fingerprinting. Operating system and library fingerprinting is a
good starting point for penetration testing to determine potential vulner-
abilities on the identified operating system or the running applications.
Those results observed from Memcached can be used to perform finger-
printing of operating systems by looking at fixed memory pages as was
proposed by Owens et al. [39]. We use the same setup as before and try
to fingerprint the exact standard C lib (libc) version. In our experiment,
we probe 3 different versions of the libc. We perform 20 subrequests
for each version we probe on Memcached. Our information disclosure
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attack detects the correct version in one sample within 44.28 seconds
(n = 100,σ = 0.19%) and an accuracy of 90%, depending on which li-
brary is mapped on the victim. Memcached can be used as an additional
possibility to force deduplication and evaluate the response time, which
we show in Section 8.6.3. The timing differences for the correct library
guesses in PHP via Memcached can be seen in Figure 8.14 (Section A).

Internet. We run the same experiment with the same setup (Nginx, PHP,
Memcached) over the internet targeting the remotepagededup:Equinix
Linux VM 14 hops away. We detect the correct version in one sample
within 166.51 seconds (n = 100,σ = 9.67%) and an accuracy of 90%. Using
the default settings for KSM, the attack would take 3.36 h. With the
settings provided by the cloud provider, the attack would take 0.22 h.

C2

Trigger and observe copy-on-write page faults in a victim
domain that shares no memory with any attacker domain.

With our attack on PHP-Memcached hosted on an Nginx server,
we demonstrated that it is possible to trigger copy-on-write page
faults within the same security domain without relying on shared
memory with the attacker domain. This can be used to perform
operating system fingerprinting like was shown via Memcached over
the internet.

8.6.2. Breaking KASLR Remotely

By randomizing the location of kernel code, data, and drivers at every
boot, KASLR makes the exploitation of memory corruption bugs in the
kernel much harder (Section 8.2.4) as an adversary needs to guess the
addresses for the attack correctly. In the past, different side-channel
attacks allowed to reduce the entropy of the randomization or to break it
entirely [8, 9, 12–14, 16, 17, 19, 24, 27, 28].

While Klein and Pinkas [22] used an information leak in IP headers to break
KASLR, so far, no remote side-channel attack has been demonstrated
against KASLR. In this section, we exploit memory deduplication to break
KASLR of a virtual machine remotely. Concurrent work by Kim et al.
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[21] demonstrated a KASLR break on co-located machines on VMWare
ESXi break via memory deduplication within 12 minutes.

We describe the necessary building blocks and threat model to mount the
attack targeting one virtual machine over the network.

Attack Scenario & Attacker Model

We assume that the version of the operating system running on the victim
machine is known to the attacker. That memory deduplication is active
and enabled by the operating system (or hypervisor). This information
can be obtained by an information leak or a fingerprinting attack, similar
to the one described on Memcached in Section 8.6.1.

Attack & Building Blocks

Finding the content of memory pages that are identical to the ones used
by the victim operating system forms the basis of our KASLR break. If
the content of the attacker-controlled page is identical, the hypervisor
deduplicates it. Thus, a subsequent write to the page yields a higher
execution time forming the side-channel we exploit throughout this paper.
While a page with the same content as a kernel page allows fingerprinting
the operating system, data and pointers stored on the page either change
during runtime or are randomized on every boot and are, thus, less
predictable.

However, on Linux, the text segment is mapped between the 1 GB region
of 0xffff ffff 8000 0000 and 0xffff ffff c000 0000. As the kernel
is 2 MB aligned, there are only 512 possible offsets in this region where
the kernel can be placed. If we find kernel pages that only contain
kernel addresses and static values, i.e., data that is not modified during
runtime, we can generate 512 different versions of the page. Each version
corresponds to one possible offset and contains the kernel addresses if the
kernel would be mapped to said offset.

A page on the victim machine is now filled with a possible content candi-
date. The remote attacker uses the API provided by the victim machine
to set the content of a page. Depending on the configuration of the
hypervisor on the target machine, the adversary waits until pages should
be deduplicated. Now the adversary writes to the same page using the
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API. The adversary measures the time it takes to write to the page, i.e.,
the time it takes for the network request to be handled. If the content
set by the adversary matches the targeted kernel page, the hypervisor
has deduplicated the pages, and to handle the write. They have to be
duplicated again. Thus, if the content matched, the adversary observes
a higher timing. For all of the 512 different possibilities, the adversary
performs these measurements, yielding a single candidate that corresponds
to the currently used randomization offset. To deal with measurement
noise, the adversary has to repeat these measurements.

In addition, it is possible to amplify the side-channel leakage. Instead of a
single kernel page, multiple different kernel pages can be generated based
on the assumed kernel offset and set at the same time. Thus, instead of a
single deduplication, the adversary observes multiple ones within a single
measurement.

Finding Suitable Kernel Pages. To send the content of possible kernel
pages, the adversary first needs to scan possible page candidates. This
can be done upfront in an offline phase and used for kernels of the same
version, thus, one assumption is that the adversary knows the version used
by the victim.

To find possible page candidates, we walk the page table levels of the
Linux kernel and inspect the content of each mapped 4 kB page. We know
in which region the text segment can be mapped and check each possible
position of a pointer, i.e., each 64 bit, if it lies in this region. If so, we
dump the contents of the page as well as all the offsets representing a
pointer within the page. We also extend this approach to kernel pages
belonging to kernel modules, as they are also randomized in a certain
memory region and could be used to break the randomization of the
modules. On a machine running Linux 5.4.92, we find 15 737 pages where
4070 contain values matching pointers within these memory regions.

In a second step, we filter the dumped pages for possible candidates that
we can use for the attack. We try to find corresponding symbol names
to the detected addresses by matching them to /proc/kallsyms, yielding
15 pages that only contain resolvable kernel text addresses. 3973 pages
contained module addresses, 39 resolvable and unresolvable addresses, and
43 no symbols at all. These pages now need to be checked if their content
is static and, thus, does not change over time. This can be achieved
by dumping the content periodically and checking it for modifications.
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Further, we want the pages to not contain any data initialized during boot
time and, thus, we need to check if the content of those pages changes
(excluding the kernel addresses) while rebooting the system multiple times.
In order to rule out hardware-specific data, this should be done on different
physical machines.

Remote Attack

For our remote KASLR break, we implemented the victim server in two
ways. First, as a RESTful API listening for HTTP/1 requests implemented
in C++ using the pistache framework [46]. For simplicity reasons, the
API allows the adversary to set and modify the content of pages directly.
However, as we have shown in Section 8.6.1, the data could be stored in an
in-memory database as well. Second, we elevate the service for HTTP/2
to support multiplexing, allowing us to mount timeless timing attacks
described by Van Goethem et al. [52]. In both scenarios, an Nginx [45]
web server running on the target machine forwards the request to the
victim service. The attacker sends the crafted pages for the offset to
test to the victim using the API. After 2 s, i.e., the time the page would
be deduplicated on our system with a high chance, the attacker sends a
network request modifying and, thus, causing the probable duplication,
and measures its response time.

HTTP/1. In the first scenario, we use HTTP/1 to communicate with
the network service and measure the response time of the network requests.
Figure 8.9 illustrates the distribution of response times for the correct
offset and an incorrect offset. Figure 8.8 shows the mean response time of
a network request for a specific offset in a remote-attack scenario. After
sending 100 requests, we can clearly see the increased response time for
the currently used randomized kernel offset.

In the local setting, we were able to recover the correct randomization
offset with a success rate of 100 % and an average runtime of 21.3 s
(n = 100). In the remote setting, we were able to recover the correct
randomization offset with a success rate of 73 % and an average runtime
of 5 min 57.9 s (n = 100). With the default configuration of the cloud
provider (cf. Section 8.4.1) this would yield an average simulated runtime
of 34 min 28.69 s. With the default Linux settings, it would take 9 hours
and 2 minutes.
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Figure 8.9.: Histogram of the measured access times for an incorrect and the
correct offset for the KASLR break. A correct guess can be clearly
distinguished from an incorrect guess.

HTTP/2 Multiplexing. To improve on the measurement noise intro-
duced by the connection between the victim and the adversary and the
necessity of accurate time stamps, we utilize Timeless Timing attacks [52]
to overcome this issue. HTTP/2 allows to pack multiple requests within a
single packet and, thus, the requests reach the server at the same time.
However, the response of the request that reaches the sender faster has
likely been processed quicker.

In contrast to the sequential HTTP/1 attack, we pick pairs of kernel
offsets that we send to the server using multiplexed HTTP/2 requests.
For every attempt, we send each pair to the server and record for which
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request we receive the response first. Note that we do not need to rely
on measured access times but just on the response order of the requests.
For pairs of both incorrect kernel offsets, we should observe a uniform
distribution between the offsets. However, if one of the offsets is the
correct one, we should observe an unequal distribution. To optimize the
approach, we reduce the number of candidates and filter out pairs with
a uniform distribution early. With each filter step, we re-combine the
candidates to new pairs.

To amplify the signal, we crafted 7 kernel pages for each possible kernel
offset. In the local-network setting, we achieved a success rate of 88.89 %
with an average runtime of 1 minute and 38 seconds (n = 100). The raw
timing differences observed in the HTTP/1 setting enable a faster attack
than HTTP/2. We were able to successfully find the correct offset in the
remote setting with a success rate of 92 % with an average runtime of
3 minutes and 15 seconds (n = 100). With a prolonged waiting time using
the default configurations of the cloud provider of how many pages are
scanned by the operating system per minute, this would yield an average
simulated attack time of 18 minutes and 25 seconds. With the default
Linux settings, it would take 4 hours and 48 minutes.

8.6.3. InnoDB Record Data Leakage

InnoDB is a storage engine used by default in the database management
systems MySQL and MariaDB. The storage engine efficiently buffers
record data and index caches in the memory and is used instead of using
the operating system’s page cache directly. InnoDB has the advantage of
providing faster access to frequently used data.

Database systems use indices to allow quick access to records, i.e., normally,
an index is placed automatically on columns marked as primary key.
InnoDB implements indices using a B+ tree, which allows fast record
lookups. The nodes of the tree are represented by index pages, which
are the basic storage unit of InnoDB and have a size of 16 kB by default.
The leaf index pages contain the actual user data. The non-leaf ones link
to other leaf or non-leaf pages. Index pages on the same tree level are
linked together to allow scanning operations. User records in an index
page are logically linked in ascending order by their key but may be placed
anywhere in the page’s physical memory.
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High-Level Overview of the Attack. To achieve byte-by-byte leakage,
the attacker needs to control the content and size of data that is stored
before the target data to bytewise shift the target data onto the attacker-
controlled page. Bosman et al. [6] showed that byte-by-byte leakage is
possible.

InnoDB performs a data reorganization of data if an insert or update
query fails as an optimization. This optimization enables byte-by-byte
leakage if the attacker controls most of the InnoDB record. Using this
primitive to perform memory massaging, an attacker can shift the secret.

Assumptions. We assume that Memcached can be used in addition as
a leakage primitive to leak the secret data co-located to the attacker-
controlled data bytewise. As we will later analyze, the Linux page cache
caches Note that this can be any primitive used for triggering deduplication
and copy-on-write page faults, i.e., remotepagededup:nginx, as was shown
by Bosman et al. [6]. We assume a database application with a user table
which is defined in Figure 8.15 and that the InnoDB index page has a
certain layout, which is explained in more detail in Section 8.6.3. We
assume that the attacker can perform multiple tries in parallel until such
a layout is given. If the layout is given, the attacker can verify whether
the requirements are fulfilled.

Attack steps. Figure 8.10 illustrates the five steps of the InnoDB reorga-
nization attack. In the first round, the attacker triggers the reorganization
and shifts the first byte of the secret value (“SECRET”) onto the
controlled 4 kB-page. Next, the attacker stores multiple guesses into Mem-
cached. The attacker waits until the deduplication happened. After the
deduplication happened, the attacker updates the Memcached guess pages
and measures the round-trip time of the network packets. The right guess
should lead to a significantly higher timing than the other guesses with
enough samples taken. Afterwards, the attacker repeats the procedure to
shift the second byte into the attacker-controlled InnoDB page, updates
the guesses in Memcached, including the first recovered byte, and leaks
the second byte. This procedure can be repeated up to a certain leakage
size. The limits are discussed in Section B.

Why an Additional Leakage Primitive is Required. InnoDB tries to
circumvent the page cache of the Linux kernel by using the O DIRECT
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Figure 8.10.: High-level idea of the InnoDB Reorganization attack.

flag in mmap [37]. However, the data is still in the page cache and gets
deduplicated. The page-cached data cannot be overwritten directly via
InnoDB. Therefore, we cannot use a second InnoDB record to trigger a
copy-on-write page fault since the data would also get deduplicated. We
found no convenient and reliable way to get external blobs consistently
in the memory and replace them to trigger copy-on-write page faults in
InnoDB. For external blobs, we have a similar race as in Memcached,
since updates are not performed in-place. Instead, resource releasing is
performed in a similar way compared to Memcached. Consequently, for
our attack, we use a memory-resident second channel (Memcached) to
trigger the copy-on-write page fault. However, this could, in general, be
any web application/resource providing such a leakage primitive that is
running on the same machine.

Determining InnoDB Attack Requirements.

We analyze the memory ordering of InnoDB by performing different SQL
statements:

Insert. Upon inserting a new record, InnoDB first tries to place the
record in its corresponding index page. If no such page exists, a new one
is created.

In case of an existing index page with sufficient consecutive free space,
e.g., unused space at the end of the page or a gap from previous deletes,
the record is placed on this index page. Should this not be possible, e.g.,
the page is full, or the free space is too fragmented, either the current
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index page is defragmented (reorganized), a new page is allocated, or a
page split is performed. Inserting into a new index page is only possible
if it does not break the existing relations in the index tree. Otherwise, a
page split has to be performed. As the space of previously deleted records
is reused, the physical order of records in an index page does not always
reflect their logical order, e.g., a record with key 5 might be inserted in
memory before a record with key 2.

Delete. When a record is deleted, it is added to the index pages free
record list. Should the free space resulting from deletions reach a certain
merge threshold, InnoDB tries to perform a merge operation to save space.
A merge operation is possible if the utilization of the next or previous
linked index page is low enough to combine it with the current page [29].

Update. Update queries in InnoDB update a record in-place, as long as
the updated record fits in the same size as the old one (new record size

≤ old record size) [30]. Otherwise, the update operation is realized as
a delete with a subsequent insert operation, inserting the updated record.

Reorganization. An insert or update query can fail even if enough space
is available on the index page because the free space is fragmented. In
such a case, InnoDB performs an optimization called reorganization [31].
During reorganization, the page is rebuilt by clearing its contents and
inserting existing records in their logical order. Afterwards, the pending
insert or update operation is completed using the freed space at the end
of the page.

Reorganization Attack.

As shown by Bosman et al. [6], an attacker can use memory-deduplication
attacks to leak data byte-by-byte if the attacker can change the memory
layout on a byte granularity. We demonstrate that this approach can also
be applied in a fully remote attack scenario.

We leak data byte-by-byte by exploiting the reorganization of database
records in InnoDB index pages. The reorganization is triggered if data is
updated or inserted, and reorganization keeps the data on the same index
page. Figure 8.15 in Section C shows the user table and its fields in the
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database, including an id, username, password, and an image field. We
assume that the attacker can register an arbitrary number of users and
modify their content.

Alignment Changing. To leak attacker-unknown record data, we need a
large record rAT to shift bytes from a target record rT into an attacker-
controlled region. To trigger the reorganization, we require an additional
record rAX in the user table. The reorganization orders the records in RAM
in their logical order. With targeted size modifications of the attacker-
controlled records rAT and rAX , we can trigger the reorganization and
bytewise shift record data from rT into an attacker-controlled 4 kB region.
To leak the targeted byte, we use Memcached used in a simple HTTP web
server as a second channel, same as in Section 8.6.1.

Amplification. To use amplification, we fill multiple pages on both
Memcached and InnoBD with different fill bytes but with a constant
leaked offset, as shown in Figure 8.11. As already mentioned, the copy-
on-write bit stays set for the correct guess in Memcached. Therefore we
can amplify by updating both Memcached and InnoDB fill bytes and
waiting again for the deduplication. This procedure can be repeated up
to a certain amplification factor. To trigger copy-on-write pagefaults, we
send an HTTP request to the server, which overwrites the content of the
Memcached pages. To reset to an index page layout, which allows leaking
a different byte offset, it is required to trigger another reorganization by
modifying the sizes of the records rAX and rAT . All requirements are
explained in full detail in Section 8.6.3.

In Detail Analysis of Attack Requirements.

To perform the reorganization attack, the attacker and victim have to be
placed on the same InnoDB index page. While this is a question on the
workload of the system, we assume that an attacker can perform sufficient
repetitions to generate a layout leading to data leakage.

A reorganization can be caused by updating the size of a record so that
it does initially not fit in any available consecutive free space on the page
but does fit after defragmentation. By choosing record sizes in the right
way, it can be guaranteed that such reorganizations are always possible.
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Figure 8.11.: Leakage of a secret byte (S) from an InnoDB record using Mem-
cached with amplification.

Initial Page Layout. Figure 8.12a describes the initial page layout re-
quired by InnoDB to leak record data. We exploit InnoDB’s reorganization
feature as a primitive for the attacker to align the secret on a byte granu-
larity. At the beginning of an index page, there are a couple of headers
and system records, summing up to 120 B [32]. Then the data of the
user records follows. At the end of the page, there is a so-called page
directory and further meta-data. The user records are also preceded by a
dynamic-sized header, which depends on the table layout and contains
information necessary for using and organizing the records. Figure 8.12a
shows the assumed initial physical and logical layout for our InnoDB
attack. The hatched areas represent unknown records. rAT and rAX are
attacker-controlled records and rT is the target record to leak.

Analysis of Required Sizes for Exploiting Reorganization. During the
rebuilding of index pages, records are inserted consecutively in memory by
their logical order, except for the record that triggered the reorganization,
which is inserted last, regardless of its key. In total, it is possible to insert
16 252 B (max free space) of record data into an index page. The layout
requires that the record rAT is logically located before rT . rAX is required
to be physically before the two records, somewhere in between the two
hatched regions in Figure 8.12a. The record rAT is used to change and
control the target record’s alignment rT . The attacker wants to make rAT

as large as possible to change the target record’s rT alignment. In the
default setting of InnoDB with a default index page size of 16 kB, the
maximum size for a record is 8125 B [32]. Thus, to leak as much data as
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possible, we choose rAT to be 8125. The validation of all requirements
and the potential leakage rate is described in Section B. Next, we discuss
the attack steps in more detail.

Preparing the Alignment and Triggering the Reorganization. To trigger
a reorganization, the attacker increases the size of record rAX using an
update query. The reorganization only happens if the updated size still
fits into the total free size of the index page. The new reorganization
moves rAX to the trailing free space within the index page, which is
large enough to contain at least rAX + 1.

If the attacker wants to shift a byte of the target record by δ bytes such
that the byte moves closer to rAT , the attacker can update the size of rAT

and decrease it by δ and increase the size of rAX by δ. The reorganization
takes out the record rAX and moves it to the newly created free location.
It causes the record r̃AX to be moved after r̃AT and rT . rAX can only be
modified up to the maximum record size. While the header of the user
record has a dynamic size, we assume that the record does not change
during the attack. If there is an additional record after rT , the header
stays the same. If there is no record after rT , the record header points
to the Supremum [33], which is at the beginning of the page. With each
alignment change, the next offset field in the records header needs to be
incremented by the byte offset to leak.
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(a) InnoDB page layout, which is susceptible to a reorganization attack. A simple
model of an index page consists of a fixed-size header, user records, the unused
space at the page end, and a footer. In this scenario the attacker controls the
records rAX and rAT . rAT is used to control the alignment of target record to leak
rT . rAX is used to trigger the reorganization within an InnoDB index page.
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(b) If the reorganization was triggered r̃AX is moved to the beginning of the trailing
free space.
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(c) Reset and reorganized InnoDB record.

Figure 8.12.: InnoDB reorganization steps.

Leaking the Secret Byte. Since we cannot leak the records in MariaDB
alone on Linux, a second way to trigger the memory deduplication is
required. Furthermore, we apply amplification for our bytewise leakage,
as discussed in Section 8.5. Figure 8.11 illustrates the amplified version of
the InnoDB record attack. We use different pages with the same content
but only a different last byte in the page, which is our probe byte in
Memcached (in Figure 8.11 the secret byte is x). In MariaDB, we update
our record rAT with the content of the first page (AAA....S). Afterwards,
we wait for a certain delay until the memory deduplication is triggered. If
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the secret byte is correct, the page gets deduplicated. After the delay, we
modify rAT again. The page in Memcached still has the R/W bit cleared.
If all amplification pages are deduplicated, we use the web application to
write on each of our amplification pages and measure the response time.

Reset. After the reorganization, the alignment is changed, and we get a
record layout, as illustrated in Figure 8.12b. Unfortunately, we cannot
modify the base alignment since we do not know the size of the other
records on the index page. However, we can either try to repeat the attack
until we start at the beginning of a 4 kB page or leak the base alignment.
To reset the state back to the initial one, we again exploit reorganization,
changing to the previous sizes. The requirement to trigger another reorga-
nization via rAT is that the trailing free space is smaller than the reset
size of rAT . The reorganization causes that the updated record rAT is now
moved after rT , leading to the memory layout illustrated in Figure 8.12c.
However, this is no problem since we can force another reorganization,
bringing back our reorganized state, as illustrated in Figure 8.12b. After
each alignment change, we switch between the reset and reorganized state
and never return to the initial state.

Evaluation. We implement and evaluate our attack on MariaDB version
10.5.8, using UNIX sockets and a simple HTTP server to connect to it
and to Memcached 1.6.8. The database is setup as shown in Figure 8.12a.
We choose a random secret of 4 B and repeat our data leakage experiment
20 times. We apply the amplification technique shown to leak a single
byte via 8 pages. To be on the safe side, we send 40 requests for all
256 possibilities. Afterwards, we probe all 256 possibilities for the secret
byte at once via Memcached. We look at the timing difference between
the means of the received distribution of writing to copy-on-write and
non-copy-on-write pages. Our attack automatically detects if a byte was
accidentally classified as copy-on-write in case we do not get clear results
for the following byte to leak. In this case, we can backtrack to the last
byte that was correctly guessed. Therefore, our approach is self-correcting
in case we accidentally received a wrong byte, and, thus, our approach
is nearly complete error-free, despite the last byte where an error might
occur.

On Linux, we observed that the time to wait for the deduplication on
InnoDB is, in many cases, more than twice as big as in the previous cases.
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To be on the safe side, we increased the wait time to 4 seconds. As the
amplification needs to be triggered sequentially, this leads to a wait time of
32 seconds per guess round. This longer delay is required since the target
page is constantly changed, and KSM does not immediately deduplicate
pages which are often modified [42]. The runtime of the attack to leak four
random bytes is on average 5644.20 seconds (n = 100, σ = 0.54%). Thus,
the attack leaks on average a single byte in 39.07 minutes or about 1.5 B/h
from a virtual machine running on a remote server in the local area network.
We simulate the attack’s performanc using the default configuration to
0.018 B/h. With the provided configuration of the cloud provider, we got
a simulated time of 0.07 B/h. Note that the large bottleneck of this attack
is the amplification technique i.e., for one iteration 32 s have to be waited.

Limitations. For the initial setup, cf. Figure 8.12a, the uncontrolled
record data before rAT can be modified in-place as long as the overall size
is not changed. Every in-place update of other records does not influence
the attack. However, a memory split, merge, or reorganization would
interfere with the attack and potentially destroy the needed layout.

C3

Find remote request paths that do not only keep attacker-
controlled data in memory but also provide the attacker
with control over alignment and in-memory representation.

We demonstrated a scenario for InnoDB used in MariaDB and
MySQL, which allows changing the alignment of database records
remotely. By changing the sizes of two attacker-controlled records,
an attacker can load bytewise parts of victim’s data to an attacker-
controlled 4 kB page. Amplification can be achieved by leveraging
the fact that deduplication can be triggered multiple times by modi-
fying the attacker-controlled record and adding certain amplification
pages to Memcached (like shown in Figure 8.11.)
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8.7. Mitigations and Further Attack Targets.

8.7.1. Mitigations

Our attack showed that memory deduplication is still a threat and even
exploitable over the network. Even isolation into security domains like
performed on Windows is not enough to mitigate information disclosure
via memory deduplication.

Deactivation. While the simplest solution would be to altogether disable
memory deduplication on Windows and Linux (Ubuntu), it is probably
the most costly in terms of performance overhead. Especially on Windows
server, where multiple users would use the same application, this could
lead to immense memory overhead. Windows allows disabling of memory
deduplication per process [35].

Only Deduplicate Zero Pages. Another mitigation by Bosman et al. [6]
would be only to deduplicate zero pages. According to their evaluation,
between 84% and 94% of the deduplication in Microsoft Edge are only zero
pages [6]. However, the covert channel is still possible with this solution
since we can still trigger copy-on-write page faults on deduplicated zero
pages.

TPS. VMWare TPS [54] uses additional salts to enable memory dedu-
plication. The salt value and the content of page have to be identical to
be shared. If VMs want to deduplicate shared content, the salted value
is unknown to an attacker. While this approach protects against cross-
VM attacks, TPS does not protect against remote memory-deduplication
attacks in the same domain.

CovertInspector. Wang et al. [55] demonstrated an approach to detect
memory-deduplication attacks by modifying KVM by 300 lines of code.
Their approach has a particular focus on intercepting the rdtsc instruction
triggered by the VM and also the number of pagefaults. Remote timers
are not considered by CovertInspector.
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VUsion. VUsion [38] mitigates all kinds of memory-deduplication attacks
by applying a share-XOR-fetch policy and fake merging. All pages that
are considered for deduplication behave the same in terms of access times
and copy-on-write pagefaults. Fake merging guarantees that every access
on a page, both shared or non-shared, behaves the same in terms of access
time. This mechanism prevents attacks on the detection of pages being
actually deduplicated [38]. While fake merging would mitigate all of our
attacks based on the copy-on-write page fault, it is not implemented nor
intended to be merged in the Linux kernel.
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Figure 8.13.: Mean response time for all possible kernel offsets. While an adver-
sary can easily observe the correct offset 106 on an unprotected
system (blue), the VUsion-protected system (red) prevents the
leakage.

We experimentally verified the effectiveness of VUsion against our remote
memory-deduplication attacks in a local area network setting. Figure 8.13
illustrates the KASLR break (cf. Section 8.6.2) on a protected (red) and
an unprotected Linux kernel 4.10 (blue) running Ubuntu 17.04 LTS. We
measured the response time for every possible offset 100 times and reported
the mean value. One can clearly see that our attack successfully recovers
the correct offset 106 while the attack against the VUsion-protected kernel
only observes higher timings.

Network-layer Countermeasures. On the network layer, we can mitigate
remote memory-deduplication attacks via network packet inspection tools
and DDoS monitoring. Another possibility to mitigate remote memory-
deduplication attacks is by adding additional noise to the network, i.e.,
by performing load balancing or adding discrete time delays. This would
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require more samples for the attacker, and at a certain point, it could
make the attack infeasible.

8.7.2. Alternative Attack Targets

We want to emphasize that fixing Memcached does not mitigate the prob-
lem of remote memory-deduplication attacks as our techniques are generic
and can be applied to other applications as well. In addition to Memcached
and InnoDB, we analyzed further applications which could be susceptible
to remote memory-deduplication attacks. Many web applications offer
the possibility to use Memcached, such as PHPBB, WordPress, Moodle,
and PrestaShop. Moodle allows image caching, which might be already
used to perform the fingerprinting attack. We analyzed the in-memory
DB Redis and found that 4 kB pages can be also placed into the memory.
There is again meta-data stored about the stored item, and it is again
a question of the correct alignment for the attacker to perform remote
memory-deduplication attacks. If the attacker’s guess about the alignment
is correct, copy-on-write pagefaults can be triggered in a similar manner
to Memcached by freeing an item and again inserting a new one with the
equal size. This leads to an overwrite of the deduplicated memory. Further-
more, we analyzed the other popular alternative for in-memory databases
SQLite. However, we found that we could not fully place a single 4 kB
page into memory. We also checked Aerospike and observed that memory
is in DRAM as key-value pair and that the aerospike key put function
directly replaces the content and could be used to trigger copy-on-write
pagefaults. As already shown by Bosman et al. [6] also request pools like
used in remotepagededup:nginx are susceptible to memory deduplication
attacks.

8.8. Conclusion

In this work, we presented how memory deduplication can be exploited
from a remote perspective. This attack does neither require local code
execution nor JavaScript execution in the browser, as demonstrated in pre-
vious work. With targeted web requests, we can observe timing differences
between duplicated pages over the network. We first evaluated the speed
of our remote covert channel based on an HTTP web server achieving a
performance of up to 302.16 B/h in a LAN setting and 34.41 B/h over



8.8. Conclusion 207

the internet. Further, we fingerprinted libraries used on the system by
exploiting the Memcached database. It is possible to fingerprint libraries
within 166.51 s over the internet. Within only 4 minutes, we successfully
broke KASLR from a virtual machine running on a server 14 network
hops away. Even though there are potential mitigations against memory
deduplication within the same security domain, they are not applied in
Linux systems. Finally, we leaked the database records’ content from
InnoDB with 1.5 B/h.
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Appendix

A. Timing Difference of Library Fingerprinting in PHP
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Figure 8.14.: Timing difference for mapped libc version (2.19) vs. other guesses.



208 Chapter 8. Remote Memory-Deduplication Attacks

The copy-on-write page faults can be observed in PHP when triggering
the deduplication via Memcached Figure 8.14.

B. Validation of Requirements for Reorganization.

For mounting a successful oracle attack against an InnoDB record, it
has to be guaranteed that a reorganization can be triggered reliably.
Reorganizing is needed to switch between the different states introduced
in Section 8.6.3.

The condition for the first reorganize from the initial state (Figure 8.12a)
to the reorganized state (Figure 8.12b) is already guaranteed by the
calculation of the initial size of ∣rAX∣ in Section 8.6.3.

For the switch from the reorganized state in Figure 8.12b to the reset
state in Figure 8.12c it must be guaranteed that the restoring of ∣rAT ∣
always triggers reorganization. Therefore the following inequality must
hold:

∣rAT ∣ > max free space − ∣r̃AT ∣ − ∣rT ∣ − ∣rAX∣ − footer sz

We can claim that ∣r̃AT ∣+∣rT ∣ ≥ 4096 must hold as otherwise the attacker
does not even control one full page which is needed for the deduplication
side channel. Using this and neglecting the footer sz we get:

∣rAT ∣ = 8125 > max free space − (∣r̃AT ∣ + ∣rT ∣) − ∣rAX∣
> 16252 − 4096 − 4064 = 8092

For the last state switch from the reset state to a new reorganized state
there are two possibilities: ∣rAX∣ is either increased by δ as long as the
resulting size is smaller than the maximum record size or it is set to the
maximum record size. In both cases a reorganize should be triggered.
Therefore for case 1 the following inequality must hold:

∣rAX∣ + δ > max free space − (∣rAT ∣ − δ) − ∣rT ∣ − ∣rAX∣
− footer sz

2 ∗ ∣rAX∣ > max free space − ∣rAT ∣
2 ∗ 4064 = 8128 > 16252 − 8125 = 8127

For case two we again use that ∣r̃AT ∣ + ∣rT ∣ ≥ 4096 must hold:

∣rAX,max∣ > max free space − ∣r̃AT ∣ − ∣rT ∣ − ∣rAX∣ − footer sz

∣rAX,max∣ > max free space − (∣r̃AT ∣ + ∣rT ∣) − ∣rAX∣
8125 > 16252 − 4096 − 4064 = 8092
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Required Sizes of Records and Potential Leakage Rate. The record
rAX is required to trigger the reorganization of records. Therefore, it
initially has to be large enough so that we can trigger a reorganization.
We determine the worst case size of the left free space for records within
an index page as follows after the first reorganization:

∣rAX∣ + 1 > trailing free space, which is always the case if

∣rAX∣ + 1 > max free space − ∣rAX∣ − ∣rAT ∣ − ∣rT ∣(−footer sz).
footer sz, ∣rT ∣ can be neglected in worst case inspection

∣rAX∣ > max free space − ∣rAT ∣ − 1

2
= 4064B

therefore:

left free space = 16 252B − 8125B − 4064B = 4063B.

Next we want to determine the boundaries for the shift into our attacker-
controlled 4 kB-page and the requirements. We define the maximum
alignment change max alignment change as rAT − rATheader

. To leak
data from rT , one page of our attacker-controlled r̃AT record needs to be
page aligned. As we chose the size of rAT to be 8125 B, we do not fully
control 2 pages. We use a certain part of rAT to bring the last 4096 B
into a page alignment. A certain page misalignment is even required to
enable a successful attack, since with a very low misalignment (e.g., 42),
we cannot control a full 4 kB page. For instance with a misalignment of
42 bytes we only control 4071 (8125 − 4096 + 42) bytes of the page to
leak the record data (leak page). Therefore, the misalignment needs to be
large enough to control a full leak page. Furthermore, the misalignment
is unknown and we need to leak the misalignment of the page. This can
be done via a remote memory-deduplication attack by trying different
offsets until the correct one is found. The misalignment is the start of
the record rAT (cf. Figure 8.12a). We determine the minimal necessary
misalignment offsetrAT

after the initial reorganization:

offsetrAT
mod4096 + ∣rAT ∣ − 1 ≥ 4096 ∗ 2

offsetrAT
mod4096 ≥ 4096 ∗ 2 + 1 − ∣rAT ∣
offsetrAT

≥ 68.

Hence, we need a misalignment of rAT of at least 68 B. Furthermore, in
case the record header moves to the leak page, we would have another
unknown value to leak. Therefore, the misalignment needs to be smaller
or equal to 4096 − ∣rATheader

∣. Each record is preceded by a record header
(rATheader

), which is maximum 27 bytes in our scenario. We have the
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probability of 0.66 % that the rATheader
moves to the leak page and 1.66 %

that the misalignment is less than 68. We derive the maximum leakage
rate for a InnoDB index page as:

max leakage possible =

min(∣rAT ∣ − 1 − ∣rATheader
∣−

offsetrT mod 4096 + ∣rAT ∣ − 2 ⋅ 4096 + 1), ∣rT ∣, 4096)

Hence, we can leak up to a full size of rT ≤ 4096 if we leak the misalignment
and the requirements for offsetrAT

hold. This limits the leakage potential
of the InnoDB attack.

C. MariaDB User Table.

Id:int

username:varchar(200)

password::varchar(200)

image::mediumblob

User Table

Figure 8.15.: MariaDB user table, which is susceptible to a remote memory-
deduplication attack.

D. Memcached Eviction.

User table used in attack on InnoDB used in MariaDB Figure 8.15.

The attacks on Memcached rely on the assumption that an attacker
can reliably trigger copy-on-write pagefaults by updating the same item.
However, one problem that can occur in the Memcached attack is that
another user gets the free deduplicated page assigned instead of the
attacker. Therefore, it is a race between the attacker and potential other
users to get the page and then trigger the copy-on-write page fault on the
deduplicated page. Another issue is whether the pages stays cached in
Memcached for a longer period until the deduplication by the operating
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system happens, i.e., 15 minutes on Windows. The eviction totally depends
on the size of the Memcached instance itself.

In this experiment, we validate how long an entry is cached in an Mem-
cached instance with different memory limits. First, we launch a new
memcached instance and load as many entries into the instance until the
memory limit is exhausted and the instance has to evict existing entries.
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Figure 8.16.: Average execution time in seconds (n = 10) until a newly added
entry is evicted from memcached depending on its given memory
limit.

Then, we add a new entry and probe how many seconds this entry re-
mains cached while we simultaneously apply a realistic workload on the
instance. We utilize memtier benchmark [43], spawning 4 threads that
simultaneously write and read entries from the memcached instance us-
ing a gaussian access pattern with an average of 671 121 ops/sec and
an average bandwith of 268.26 MB/s. Figure 8.16 illustrates after how
many seconds on average the added entry is evicted from the memcached
instance (n = 10). Figure 8.16 illustrates the eviction time for different
Memcached node sizes. As can be seen, the larger the node is, the longer
it takes to evict a certain item.
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Abstract

Compression algorithms have side channels due to their data-dependent
operations. So far, only the compression-ratio side channel was exploited,
e.g., the compressed data size.

In this paper, we present Decomp+Time, the first memory-compression
attack exploiting a timing side channel in compression algorithms. While
Decomp+Time affects a much broader set of applications than prior
work, a key challenge is precisely crafting attacker-controlled compression
payloads to enable the attack with sufficient resolution. We develop an
evolutionary fuzzer, Comprezzor, to find effective Decomp+Time payloads
that optimize latency differences and find payloads that are so effective
that decompression timing can even be exploited in remote Decomp+Time
attacks across the Internet. Decomp+Time has a capacity of 9.73 kB/s
locally, and 10.72 bit/min across the internet (14 hops, > 700 miles).
Using Comprezzor, we develop attacks that leak data byte-by-byte in four
different case studies: First, we leak 1.50 bit/min from Memcached on
a remote server running a PHP application. Second, we leak database
records with 2.69 bit/min from PostgreSQL, managed by a Python-Flask
application, over the internet. Third, we leak secrets with 49.14 bit/min
locally from ZRAM-compressed pages on Linux. Fourth, we leak internal
heap pointers from the V8 engine within the Google Chrome browser on
a system using ZRAM. This highlights the importance of re-evaluating
the use of compression on sensitive data even if the application is only
reachable via a remote interface.
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9.1. Introduction

Data compression plays a vital role for reducing the memory and stor-
age utilization and in file formats such as PDF, image, and video files.
Similarly, operating systems (OSs) rely on memory compression [6, 86]
to reduce system memory utilization. Memory compression is also used
in databases [63] and key-value stores [62]. Compression can even in-
crease performance and efficiency when storing or transferring data to
slow storage devices or across networks. Hence, data compression is also
widely used for HTTP traffic [20, 54] and file-system compression [12].
Recent trends include columnar (column-oriented) compression to reduce
the disk utilization for databases [5, 15, 50, 57]. If the data to compress
is secret, the compression ratio depends on the secret, introducing a
compression-ratio side channel, often exploited in the context of TLS-
encrypted traffic [8, 25, 39, 55, 66, 77, 78]. All these attacks focused on
web traffic and only exploited differences in the compressed size of data
when compressed together with attacker-controlled data. The size of the
compressed data is either accessed directly [66] in a man-in-the-middle
scenario or indirectly by observing the transmission time that linearly
depends on the size of the compressed data [8] and, thus, the compression
ratio.

Compression trades data size for computation time. However, so far, only
the result of the compression, i.e., the compressed size, has been exploited
to leak data but not the time consumed by the process of compression or
decompression itself. First described by Kelsey et al. [40], most attacks
focus on compressed web traffic. Surprisingly, security implications of
compression in other settings, such as virtual memory or databases, have
not been studied much. This raises two questions:

Q1: Can timing differences in compression and decompression time be
exploited if the compression ratio is not observable?
Q2: Can these timing differences be significant enough to exploit them in
a fully remote setting?

In this paper, we present Decomp+Time, the first memory-compression
attack exploiting a timing side channel in memory decompression. We
show that the decompression time directly leaks information about the
compressed data. Our timing side channel exploits large timing differences
for edge cases when decompressing nearly incompressible data. Since
these edge cases require surgically crafted attacker-controlled payloads, we
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developed Comprezzor, an evolutionary fuzzer to generate memory layouts
to trigger and amplify the edge cases. The techniques we present are
generic and can be applied to various compression algorithms implementing
sequence compression. We show that the Comprezzor-based payloads
influence the decompression time so significantly that they can be observed
remotely when the compressed data never leaves the victim system, i.e.,
the compression-ratio side channel is not exploitable.

We compare the latency differences induced by Comprezzor-generated
algorithm-specific attacker payloads and manually crafted ones and find
that Comprezzor-generated attacker payloads have latency differences
up to three orders of magnitude above manually crafted layouts. We
evaluate four realistic secret-leakage scenarios by generating these precise
high-latency-inducing payloads. We even demonstrate remote attacks
on an in-memory database system without executing code on the victim
machine and without observing the victim’s network traffic. Hence, our
case studies show that compressing sensitive data poses a security risk in
any scenario using compression and not just for web traffic.

We systematically analyze six compression algorithms, including widely-
used algorithms such as DEFLATE (in zlib), PGLZ (in PostgreSQL), and
zstd (by Facebook). Comprezzor is easy to extend to new compression al-
gorithms, and it already fully supports all of these compression algorithms.
Our findings show that the decompression time not only correlates with
the entropy of the uncompressed data but also with various other aspects,
such as the relative position of secret data or alignment of compressible
data. In general, these timing differences arise due to the design of the
compression algorithm and, importantly, also its implementation. Our
results show that all analyzed compression algorithms are susceptible to
timing side channels when observing data-compression and -decompression
times.

We evaluate Decomp+Time in scenarios where secret data is compressed
alongside attacker-controlled data. This is a common scenario in virtual
memory and also in databases where victim data and attacker-controlled
data may be placed in a single cell, e.g., when storing structured data
like JSON documents.

1
The attacker guesses the secret byte by byte

while measuring the decompression time e.g., via a web request that on

1
Importantly, there is no indication or recommendation to not place victim data

and attacker-controlled data in a single cell. Thus, there is no reason why users should
not do this as of today. Our work and related documentation updates inform users
about the risks they are exposing their data to.
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the server-side performs a simple read access to the data in compressed
memory. We evaluate the capacity of Decomp+Time in a covert channel
abusing the memory compression of Memcached, an in-memory object
caching system. We can, on average, transmit 9.73 kB/s locally and
10.72 bit/min across the internet (14 hops, > 700 miles).

We present four case studies leaking sensitive compressed data byte by
byte: First, we attack an internet-facing PHP application using Mem-
cached internally to leak a secret in 5.32 min per byte over the internet, i.e.,
1.50 bit/min. Second, we leak database records from a remote web app
using PostgreSQL internally, with transparent database compression, at
2.97 min per byte, i.e., 2.69 bit/min. Third, we exploit ZRAM, the mem-
ory compression module in Linux, transparently introducing timing side
channels regardless of the security needs of the application.

1
In this setting,

we leak a secret locally in 0.16 min per byte, i.e., 49.14 bit/min. Fourth,
we demonstrate an end-to-end exploit leaking internal heap pointers from
sandboxed JavaScript inside the Google Chrome browser.

Our work highlights the importance of re-evaluating the use of compression
on sensitive data on any layer, even if the application is only reachable
via a remote interface.

Contributions. The main contributions of this work are:

1. We present a systematic analysis of timing leakage for several lossless
data-compression algorithms.

2. We develop an evolutional fuzzer to find surgically precise attacker
payloads to trigger extremely slow edge cases in memory decompression
algorithms.

3. We demonstrate the possible leakage rate with a remote covert channel
leaking 9.73 kB/s locally, and 10.72 bit/min across the internet (14
hops, > 700 miles).

4. We leak secrets byte-by-byte using Memcached, PostgreSQL, and
ZRAM, with leakage rates between 1.5 bit/min to 2.69 bit/min in the
remote setting and 1.5 kB/s to 9.73 kB/s in the local setting.

Disclosure. We responsibly disclosed our findings to the developers, and
the issues were assigned CVE-2022-0925. We will open-source Comprezzor

1
This is particularly dangerous as users may be unaware and uninformed about

this behavior of the OS, that introduces leakage in their applications.
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and attacks on Github
1
. A video of the PGLZ attack can be found on

Streamable
2
.

9.2. Background and Related Work

9.2.1. Data Compression Algorithms

Lossless compression reduces the size of data without losing information.
One of the most popular algorithms is the DEFLATE compression al-
gorithm [18], which is used in gzip (zlib). The DEFLATE compression
algorithm consists of two main parts, LZ77 followed by Huffman encoding.
The Lempel-Ziv (LZ77) part scans for the longest repeating sequence
within a sliding window and replaces repeated sequences with a reference
to the first occurrence [14]. This reference stores distance and length of
the occurrence. The Huffman-coding part tries to reduce the redundancy
of symbols. When compressing data, DEFLATE first performs LZ77
encoding and Huffman encoding [14]. When decompressing data (inflate),
they are performed in reverse order. The algorithm provides different
compression levels to optimize for compression speed or compression ratio.
The smallest possible sequence has a length of 3 B [18]. Other algorithms
provide different design points for compressibility and speed. Zstd, de-
signed by Facebook [16] for modern CPUs, improves both compression
ratio and speed, and is used for compression in file systems (e.g., btrfs,
squashfs) and databases (e.g., AWS Redshift, RocksDB). LZ4 and LZO are
optimized for compression and decompression speed. Especially LZ4 gains
its performance by using a sequence compression stage (LZ77) without the
symbol encoding stage (Huffman) like in DEFLATE. FastLZ, similar to
LZ4, is a fast compression algorithm implementing LZ77. PGLZ is a fast
LZ-family compression algorithm used in PostgreSQL for varying-length
data in the database [63].

9.2.2. Prior Data Compression Attacks

In 2002, Kelsey [40] first showed that any compression algorithm is suscep-
tible to information leakage based on the compression-ratio side channel.
Duong and Rizzo [66] applied this idea to steal web cookies with the

1
https://github.com/anonymized-for-submission

2
https://streamable.com/qxr9h4

https://github.com/anonymized-for-submission
https://streamable.com/qxr9h4
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CRIME attack by exploiting TLS compression. In the CRIME attack,
the attacker adds additional sequences in the HTTP request, which act
as guesses for possible cookies values, and observes the request packet
length, i.e., the compression ratio of the HTTP header injected by the
browser. If the guess is correct, the LZ77-part in gzip compresses the
sequence, making the compression ratio higher, thus allowing the secret
to be discovered. For CRIME, the attacker needs to spy on the packet
length, and the secret needs a known prefix such as cookie=. To mitigate
CRIME, TLS-level compression was disabled for requests [8, 25]. The
BREACH attack [25] revived the CRIME attack by attacking HTTP
responses instead of requests and leaking secrets in the HTTP responses
such as cross-site-request-forgery tokens. The TIME attack [8] uses the
time of a response as a proxy for the compression ratio, as it can be
measured even via JavaScript. To reliably amplify the signal, the attacker
chooses the size of the payload such that additional bytes, due to changes
in compressibility, cross a boundary and cause significantly higher delays
in the round-trip time (RTT). TIME exploits the compression ratio to
amplify timing differences via TCP windows and does not exploit tim-
ing differences in the underlying compression algorithm itself. Vanhoef
and Van Goethem [78] showed with HEIST that HTTP/2 features can
also be used to determine the size of cross-origin responses and to exploit
BREACH using the information. Van Goethem et al. [77] similarly showed
that compression can be exploited to determine the size of any resource
in browsers. Karaskostas and Zindros [39] presented Rupture, extending
BREACH attacks to web apps using block ciphers. Voracle [55] exploits
compression in VPNs using similar techniques as CRIME. Tsai et al. [75]
demonstrated cache timing attacks on compressed caches, leaking a secret
key in under 10 ms. Common Theme. Prior attacks primarily exploit
the compression-ratio side channel. However, the time taken by the under-
lying compression algorithm is not analyzed or exploited as side channels.
Additionally, these attacks largely target the HTTP traffic and website
content, and do not focus on the broader applications of compression such
as memory compression, databases, and others, that we target in this
paper.

9.2.3. Fuzzing to Discover Side Channels

Historically, fuzzing has been used to discover memory corruption bugs
in applications [21, 46, 59, 87]. Typically, it involves feedback based
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on novelty search, executing inputs, and collecting ones that cover new
program paths in the hope of triggering bugs. Other fuzzing proposals use
genetic algorithms to direct input generation towards interesting paths [65,
73]. Directed fuzzing guides the exploration towards specific program
points that are identified as interesting [9, 24, 26]. Recently, fuzzing
has also been used to discover side channels both in software and in the
microarchitecture [23, 27, 51, 81]. ct-fuzz [34] used fuzzing to discover
timing side channels in cryptographic implementations. Nilizadeh et al.
[56] used differential fuzzing to detect compression-ratio side channels
that enable the CRIME attack. Bang et al. [7] used symbolic execution
to discover side-channel leakage for compression-ratio attacks.

9.3. High-level Overview

In this section, we discuss the high-level overview of memory compression
attacks and the attack model.

9.3.1. Attack Model & Attack Overview

Attack Model. Most prior attacks discussed in Section 9.2.2 focus on
the compression ratio side channel. However, observing the compression-
ratio over the network requires a strong attacker who can monitor the
network traffic. Additionally, this information must be exposed by the
system, which is typically not the case if the compressed data is only
handled on the remote system and not transferred to the attacker. Even
the TIME attack and its variants by Vanhoef and Van Goethem et al.
[77, 78] only exploit timing differences due to the TCP protocol. None
of these exploited or analyzed timing differences due to the compression
algorithm itself, which is the focus of our attack. Once the attacker data
is compressed with the secret, the attacker only needs to measure the
latency of a subsequent read access to the attacker-controlled data. As
we expect system noise, when performing the experiment, we assume that
the attacker can repeat the measurement multiple times. Furthermore,
we assume no software vulnerabilities in the application itself. A public
API provides an interface to upload, read and modify data, which is
compressed and stored either in main memory or on the disk. The threat
model is similar to fully remote attacks, as, presented by Schwarzl et al.
[71].
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Figure 9.1.: Overview of a memory compression attack exploiting a timing side
channel.

Data Co-location. We assume that the attacker can co-locate data
with secret data. This assumption is in line with all previous mem-
ory compression attacks [8, 25, 39, 66, 77, 78]. For HTTP request-
s/responses, the attacker was able to arbitrarily co-locate guesses of
the cookie value, e.g., Known Data (Prefix) || Secret Data || Att-

acker-controlled data. Moreover, co-location can also occur in the
other direction with a known suffix or direct co-location of attacker-
controlled and secret data e.g., Secret Data || Known Data (Suffix)

|| Attacker-controlled data.

In applications, co-location is possible not only in HTTP requests, but
also via a memory storage API like Memcached, with a shared database
between attacker and victim that compresses multiple rows or columns. For
cellular compression, co-location might occur in JSON fields storing data
from different origins. Moreover, co-location can occur directly in virtual
memory. For instance, pointers can be co-located with other attacker-
controlled data structures (on the heap) and compressed by the operating
system. In such a setting, potential targets are internal malloc pointers
to libc functions for breaking ASLR or internal pointers to metadata in
JavaScript engines. We demonstrate four case studies, where co-location
leads to data leakage in commonly used software in Section 9.6.

Attack Overview. Figure 9.1 illustrates an overview of a memory
compression attack in five steps. The victim application can be a web
server with a database or software cache, or a filesystem that compresses
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stored files. First, the attacker sends its data to be stored to the victim’s
application. Second, the victim application compresses the attacker-
controlled data, together with some co-located secret data, and stores the
compressed data. The attacker-controlled data contains a partial guess
of the co-located victim’s data SECRET or, in the case where a prefix or
suffix is known, prefix=SECRET. The guess can be performed bytewise to
reduce the guessing entropy. If the partial guess (e.g., SECR) is correct,
the compressed data not only has a higher compression ratio, but it
also influences the decompression time. Third, after the compression
happened, the attacker requests the content of the stored data again and
takes a timestamp. Fourth, the victim application decompresses the
attacker-controlled input together with the secret data and acknowledges
the request. Fifth, the attacker takes another timestamp when the
application responds and computes the RTT as the difference between the
two timestamps. Based on the RTT, which depends on the decompression
latency of the algorithm, the attacker infers whether the guess was correct
or not and leaks the secret data. Thus, the attack relies on the timing
differences of the compression algorithm itself, which we characterize next.

9.4. Systematic Study: Compression Algorithms

In this section, we provide a systematic analysis of timing leakage in
compression algorithms. We choose six popular compression algorithms
(zlib, zstd, LZ4, LZO, PGLZ, and FastLZ), and evaluate the compression
and decompression times based on the input data’s entropy. Zlib, imple-
menting the DEFLATE algorithm, is commonly used for compressing files
and is used in gzip. Zstd is Facebook’s alternative to Zlib. PGLZ is used
in the popular relational database management system PostgreSQL. LZ4,
FastLZ, and LZO were built to increase compression speeds. For each algo-
rithm, we observe timing differences in the range of hundreds to thousands
of nanoseconds based on the content of the input data (4 kB-page).

9.4.1. Experimental Setup

We conducted the experiments on an Intel i7-6700K (Ubuntu 20.04, kernel
5.4.0) with a fixed frequency of 4 GHz. We evaluate the latency of each
compression algorithm with three different input values, each 4 kB in size.
The first input is the same byte repeated 4096 times, which should be
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Table 9.1.: Different compression algorithms yield distinguishable timing dif-
ferences when decompressing 4 kB content with a different entropy
(n = 100000).

Algorithm
Fully Partially

Incompressible (ns)
Compressible (ns) Compressible (ns)

FastLZ 7257.88 (±0.23%) 4264.56 (±2.27%) 1155.57 (±0.92%)
LZ4 605.79 (±1.02%) 218.68 (±1.76%) 107.90 (±2.49%)
LZO 2115.65 (±2.05%) 1220.07 (±3.64%) 309.44 (±6.27%)
PGLZ 813.75 (±0.71%) 5340.47 (±0.38%) -
zlib 7016.02 (±0.33%) 13 212.53 (±0.35%) 1640.09 (±1.51%)
zstd 941.05 (±0.94%) 772.55 (±0.77%) 370.59 (±2.87%)

fully compressible. The second input is partly compressible and a hybrid
of two other inputs: half random bytes and half compressible repeated
bytes. The third input consists of random bytes which are theoretically
incompressible. With these, we show that compression algorithms have
different timings depending on the compressibility of the input.

9.4.2. Timing Differences for Different Inputs

For each algorithm and input, we measure the decompression and com-
pression time of a 4 kB data blob over 100 000 repetitions and compute
the mean values and standard deviations.

Decompression. Table 9.1 lists the decompression latencies for all
evaluated compression algorithms. Depending on the entropy of the
input data, there is considerable variation in the decompression time. All
algorithms incur a higher latency for decompressing a fully compressible
page compared to an incompressible page, leading to a timing difference of
few hundred to few thousand nanoseconds for different algorithms. This
is because, for incompressible data, algorithms can augment the raw data
with additional metadata to identify such cases and perform simple memory
copy operations to “decompress” the data, as is the case for zlib where
the decompression for an incompressible page is 5375.93 ns faster than for
a fully-compressible page. For decompression of partially-compressible
pages, some algorithms (FastLZ, LZ4, LZO, zstd) lead to lower latencies
compared to fully-compressible pages. Zlib and PGLZ lead to a higher
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decompression latency for partially-compressible pages compared to fully-
compressible pages. This shows the existence of even algorithm-specific
variations in timings. PGLZ does not create compressible memory in the
case of an incompressible input, and hence we do not measure its latency
for this input.

Compression. For compression, we observed a trend in the other di-
rection (Table 9.4 in Section B lists compression latencies for different
algorithms). For different levels of compressibility, there are also latencies
between the three different inputs, which are clearly distinguishable in the
order of multiple hundreds to thousands of nanoseconds. Thus, timing
side channels from compression might also be used to exploit compression
of attacker-controlled memory co-located with secret memory. However,
attacks using the compression side channel might be harder to perform
in practice as the compression of data might be performed in a separate
task (in the background), and the latency is, therefore, not easily observ-
able for an attacker. Hence, our work focuses on attacks exploiting the
decompression timing side channel.

Handling of Corner Cases. For incompressible pages, the “compressed”
data can be larger than the original size with the additional compression
metadata. Additionally, it is slower to access after compression than
raw uncompressed data. Hence, this corner-case with incompressible
data may be handled in an implementation-specific manner, which can
itself lead to additional side channels. For example, a threshold for the
compression ratio can decide when a page is stored in a raw format or in a
compressed state, like in Memcached-PHP [62]. PGLZ, the algorithm used
in PostgreSQL database, which computes the maximum acceptable output
size for input by checking the input size and the strategy compression
rate, could fail to compress inputs in such corner cases.

In Section 9.6, we show how real-world applications like Memcached,
PostgreSQL, and ZRAM deal with such corner cases and demonstrate
attacks on each of them.

9.4.3. Leaking Secrets via Timing Side Channels

Thus far, we analyzed timing differences for decompressing different inputs,
which in itself is not a security issue. In this section, we demonstrate
Decomp+Time to leak secrets from compressed pages using these timing
differences. We focus on sequence compression, i.e., LZ77 in DEFLATE.
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Building Blocks for Decomp+Time

Decomp+Time consists of 3 building blocks: sequence compression to
modulate the compressibility of an input, co-location of attacker data and
secrets, and timing variation for decompression depending on the change
in compressibility of the input.

Sequence compression: Sequence compression i.e., LZ77 tries to
reduce the redundancy of repeated sequences in an input by replacing
each occurrence with a pointer to the first occurrence. This results in a
higher compression ratio if redundant sequences are present in the input
and a lower ratio if no such sequences are present. This compressibility
side channel can leak information about the compressed data.

Co-location of attacker data and secrets: If the attacker can control
a part of data that is compressed with a secret, as described in Figure 9.1,
then the attacker can place a guess about the secret and place it co-located
with the secret to exploit sequence compression. If the compression ratio
increases, the attacker can infer if the guess matches the secret or not.
While the CRIME attack [66] previously used a similar set up and observed
the compressed size of HTTP requests to steal secrets like HTTP cookies,
we introduce a more general attack that does not require observability of
compressed sizes.

Timing Variation in Decompression: We infer the change in com-
pressibility via its influence on the decompression timing. We observe that
even sequence compression can cause variation in the decompression tim-
ing based on compressibility of inputs (for all algorithms in Section 9.4.2).
If the sequence compression reduces redundant symbols in the input
and increases the compression ratio, we observe faster decompression
due to fewer symbols. Otherwise, with a lower compression ratio and
more symbols, decompression is slower. Hence, the attacker can infer the
compressibility changes for different guesses by observing differences in
decompression time. For a correct guess, the guess and the secret are
compressed together and the decompression is faster due to fewer symbols.
For incorrect guesses with more symbols it is slower.

Launching Decomp+Time

Using the building blocks described above, we set up the attack with an
artificial victim program that has a 6 B secret string (SECRET) embedded
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Figure 9.3.: Bytewise-leakage of the secret’s last byte. A threshold (line) sepa-
rates the correct from the wrong guess.

into a 4 kB page. The page also contains attacker-controlled data that is
compressed together with the secret, like the scenario shown in Figure 9.1.
The attacker can update its own data in place to make multiple guesses.
The attacker can also read this data, which triggers a decompression of
the page and allows the attacker to measure the decompression time. A
correct guess that matches the secret results in faster decompression.

We perform the attack on the zlib library (1.2.11) and use 8 different
guesses, including the correct guess. For each guess, a single string is
placed 512 B away from the secret value; Note that this offset is arbitrarily
chosen, and other offsets also work. Other data in the page is initialized
with dummy values (repeated number sequence from 0 to 16). To measure
the execution time, we use the rdtsc instruction.
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Evaluation. Our evaluation was performed on an Intel i7-6700K (Ubuntu
20.04, kernel 5.4.0) with a fixed frequency of 4 GHz. To get stable results,
we repeat the decompression step with each guess 10 000 times and repeat
the entire attack 100 times. For each guess, we take the minimum timing
difference per guess and choose the global minimum timing difference to
determine the correct guess. Figure 9.2 illustrates the minimum decom-
pression times. With zlib, we observe that the correct guess is faster on
average by 71.5 ns (n = 100, σµ̄ = 199.55%) compared to the second-fastest
guess. Our attack correctly guessed the secret in all 100 repetitions of the
attack. While we used a 6 B secret, our experiment also works for smaller
secrets down to a length of 4 B.

Bytewise Leakage. If the attacker manages to guess or know the first
three bytes of the secret, the subsequent bytes can even be leaked bytewise
using our attack. Both CRIME and BREACH assume a known prefix
such as cookie=. Similar to CRIME and BREACH [25, 39, 66], we try
to perform a bytewise attack by modifying our simple layout. We use
the first 5 characters of SECRET as a prefix ("SECRE") and guess the
last byte with 7 different guesses. On average, the latency is 28.37 ns
(n = 100, σµ̄ = 186.61%), between the secret and second fastest guess.
Figure 9.3 illustrates the minimum decompression times for the different
guesses. However, we observe an error rate of 8 % for this experiment,
which might be caused by the Huffmann-decoding part in DEFLATE.

While techniques like the Two-Tries method [25, 39, 66] have been proposed
to overcome the effects of Huffman-coding in DEFLATE to improve the
fidelity of byte-wise attacks exploiting compression ratio, we seek to explore
whether bytewise leakage can be reliably performed via the timing only
by amplifying the timing differences.

Challenge of Amplifying Timing

While the decompression timing side channels can be used in attacks,
the timing differences are quite small for practical exploits on real-world
applications. For example, the timing differences we observe for the
correct guess are in tens of nanoseconds, while most practical use cases
of compression, like a Memcached server accessed over the network or
PostgreSQL database accessed from a disk, could have access latencies of
milliseconds.
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Amplification. To enable memory compression attacks even via the
network, we need to amplify the timing difference between correct and
incorrect guesses. However, it is impractical to manually identify inputs
that could amplify the timing differences, as each compression algorithm
has a different implementation that is often highly optimized. Moreover,
various input parameters could influence the timing of decompression, such
as frequency of sequences, alignments of the secret and attack-controlled
data, size of the input, entropy of the input, and different compression levels
provided by algorithms. We develop an evolutionary fuzzer, Comprezzor,
to automatically find inputs that amplify the timing difference between
correct and incorrect guesses for compression algorithms.

9.5. Evolutionary Compression-Time Fuzzer

Compression algorithms are highly optimized and complex. Hence, we in-
troduce Comprezzor, an evolutionary fuzzer to discover attacker-controlled
inputs for compression algorithms that maximize differences in decompres-
sion times for certain guesses enabling bytewise leakage.The motivation
for this automated tool is that there are too many possibilities for crafting
efficient payloads manually. Our manual attempts only result in minimal
timing differences that are difficult to exploit.

Comprezzor empowers genetic algorithms to amplify decompression side
channels. It treats the decompression process of a compression algorithm
as an opaque box and mutates inputs to the compression while trying
to maximize the output, i.e., timing differences for decompression with
different guesses. The mutation process in Comprezzor focuses on the
entropy of the data and the memory layout and alignment that end up
triggering optimizations and slow paths. Figure 9.4 illustrates a high-level
overview of the steps Comprezzor performs.

While previous approaches used fuzzing to detect timing side channels [34,
56], Comprezzor can dramatically amplify timing differences by being
specialized for compression algorithms by varying parameters like the
input size, layout, and entropy that affect the decompression time. The
inputs discovered by Comprezzor can amplify timing differences to such
an extent that they are even observable remotely.
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9.5.1. Design of Comprezzor

In this section, we describe the key parts of our fuzzer: Input Generation,
Fitness Function, Input Mutation and Evolution.

Input Generation. Comprezzor generates memory layouts for De-
comp+Time by maximizing the timing differences on decompression of the
correct guess compared to incorrect ones. Comprezzor creates layouts with
sizes in the range of 1 kB to 64 kB. It uses a helper program that takes the
memory layout configuration as input, builds the requested memory layout
for each guess, compresses them using the target compression algorithm,
and reports the observed timing differences in the decompression times
among the guesses. A memory layout configuration is composed of a file
to start from, the offset of the secret in the file, the offset of guesses,
how often the guesses are repeated in the layout, the compression level
(i.e., between 1 and 9 for zlib), and a modulus for entropy reduction that
reduces the range of the random values. The fuzzer can be used in cases
where a prefix or suffix is known and unknown.

Fitness Function. The evolutionary algorithm of Comprezzor starts
from a random population of candidate layouts (samples) and takes as
feedback the difference in time between decompression of the generated
memory containing the correct guess and the incorrect ones. Comprezzor
uses the timing difference between the correct guess and the second-
fastest guess as the fitness score for a candidate. The fitness function is
evaluated using a helper program performing an attack on the same setup
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as in Section 9.4.1. The program performs 100 iterations per guess and
reports the minimum decompression time per guess to reduce the impact
of noise. This minimum decompression time is the output of the fitness
function for Comprezzor.

Input Mutation. Comprezzor is able to amplify timing differences
thanks to its set of mutations over the samples space specifically designed
for data compression algorithms. Data compression algorithms leverage
input patterns and entropy to shrink the input into a compressed form.
For performance reasons, their ability to search for patterns in the input is
limited by different internal parameters, like lookback windows, look-ahead
buffers, and history table sizes [14, 63]. We designed the mutations that
affect the sample generation process to focus on input characteristics that
directly impact compression algorithm strategies and limitations towards
corner cases.

Comprezzor mutations randomize the entropy and size of the samples that
are generated. This has an effect on the overall compressibility of sequences
and literals in the sample [14]. Moreover, the mutator varies the number
of repeated guesses and their position in the resulting sample, stressing
the capability of the compression algorithm to find redundant sequences
over different parts of the input. This affects the sequence compression
and triggers corner cases, e.g., subsequent blocks to be compressed are
directly marked as incompressible (cf. Section 9.5.2). All these factors
contribute to Comprezzor’s ability to amplify timing differences.

Input Evolution. Comprezzor follows an evolutionary approach to gen-
erate inputs that maximize timing differences. It generates and mutates
candidate layout configurations for the attack. Each configuration is for-
warded to the helper program that builds the requested layout, inserts the
candidate guess, compresses the memory, and returns the decompression
time.

Comprezzor iterates through different generations, with each sample having
a probability of survival to the new generation that depends on its fitness
score. The fitness score is the time difference between the correct guess
and the nearest incorrect one. Comprezzor discards all the samples where
the correct guess is not the fastest or slowest. A retention factor decides
the percentage of samples selected to survive among the best ones in the
old generation (5 % by default). The population for each new generation
is initialized with the samples that survived the selection process and
enhanced by random mutations of such samples. By default, 70 % of
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the new population is generated by mutating the best samples from the
previous generation. To avoid locally optimal solutions, a percentage
of completely random new samples is injected in each new generation.
Comprezzor runs until the maximum number of generations is evaluated,
and returns the best candidate layouts.

9.5.2. Results: Fuzzing Compression Algorithms

Evaluation. Our test system has an Intel i7-6700K (Ubuntu 20.04,
kernel 5.4.0) with a fixed frequency of 4 GHz. We run Comprezzor on
four compression algorithms: zlib (1.2.11), Facebook’s Zstd (1.5.0), LZ4
(v1.9.3), and PGLZ in PostgreSQL (v12.7). Comprezzor can support new
algorithms by just adding compression and decompression functions.

We run Comprezzor with 50 epochs and a population of 1000 samples per
epoch. We set the retention factor to 5 %, selecting the best 50 samples in
each generation of 1000 samples. We randomly mutate the selected samples
to generate 70 % of the children and add 25 % of randomly generated
layouts to the new generation. The overall runtime of Comprezzor was
2.46 h for zlib, 1.73 h for zstd, 1.64 h for LZ4, and 2.09 h for PGLZ. Table 9.3
(Section A) lists the maximum timing differences found for the four
compression algorithms. Particularly, for zlib and PGLZ, the fuzzer
discovers cases with timing differences of multiple microseconds between
correct and incorrect guesses. Since zlib is a popular algorithms, we
analyze it in more detail.

Zlib. Comprezzor discovers a corner case in zlib where all incorrect guesses
lead to a slow code path, and the correct guess leads to a significantly
faster execution time. Using Comprezzor with a known prefix, we observe
a high timing difference of 71 514.75 ns, which is 3 orders of magnitude
larger than the manually-discovered latency difference (cf. Section 9.4.3).
This memory layout also leads to similarly high timing differences across
all compression levels of zlib. To rule out microarchitectural effects, we
confirm the experiment on different systems with an Intel i5-8250U, AMD
Ryzen Threadripper 1920X, and Intel Xeon Silver 4208.

On further analysis, we observe that the corner case identified by the
fuzzer is due to incompressible data. The initial data in the page, from a
uniform distribution, is primarily incompressible. For such incompress-
ible blocks, DEFLATE can store them as raw data blocks, called stored
blocks [18]. Such blocks have fast decompression times as only a single
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memcpy operation is needed on decompression instead of the actual DE-
FLATE process. In this particular corner case, the correct guess results
in such an incompressible stored block which is faster, while an incorrect
guess results in a partly-compressible input which is slower.

Correct Guess. In the case where the guess matches the secret, the
entire guess string, i.e., cookie=SECRET, is compressed with the secret
string. All subsequent data in the input is incompressible and treated as
a stored block and decompressed with a single memcpy operation, which is
significantly faster than Huffman and LZ77 decoding.

Incorrect Guess. In the compression case where the guess does not
match the secret, only the prefix of the guess, i.e., cookie=, is com-
pressed with the prefix of the secret, while another longer sequence, i.e.,
cookie=FOOBAR leads to forming a new block. Therefore, when decom-
pressing, this block must now undergo the Huffman decoding (and LZ77),
which results in several table lookups, memory accesses, and higher la-
tency. Thus, the timing differences for the correct and incorrect guesses
are amplified by the layout that Comprezzor discovered. We provide more
details about this layout in Figure 9.10 in the Section D and also provide
listings of the debug trace from zlib for the decompression with the correct
and incorrect guesses, to illustrate the root-cause of the amplified timing
differences with this layout.

Larger Secret Sizes. Evaluating a larger secret size (1 kB random string)
with Comprezzor on zlib, results in similar high timing differences in the
range of tens of microseconds for the correct guess using a byte-by-byte
attack.

Takeaway We showed that it is possible to amplify timing differences
for decompression timing attacks (answers Q1). With Comprezzor, we
presented an approach to automatically find high timing differences in
compression algorithms.

9.6. Case Studies

In this section, we present case studies showing the security impact of the
timing side channel. We present a local covert channel that allows hidden
communication by leveraging the high-latency scenarios found by Com-
prezzor. Furthermore, we present a remote covert channel that exploits
the decompression of memory objects in Memcached. We demonstrate
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Decomp+Time on a PHP application that compresses secret data together
with attacker data to leak the secret bytewise. We leak inaccessible values
from a database, exploiting the internal compression of PostgreSQL. We
show that OS-based memory compression (ZRAM) also has timing side
channels that can leak secrets. In these case studies we do not artificially
restrict the possible layouts of the pages, since these are possible ways in
which those systems may be used, as confirmed by their developers during
responsible disclosure. In our fourth study on Google Chrome, we show
how to create co-location between attacker-controlled data and internal
heap pointers and exploit ZRAM compression to leak the internal pointer.

9.6.1. Covert channel

To evaluate the transmission capacity of memory-compression attacks, we
evaluate the transmission rate for a covert channel, where the attacker
controls the sending and receiving end. Similar to previous works [30–32,
43, 85], we evaluate a cross-core covert channel using shared memory.
The maximum capacity poses a leakage rate limit for our other attacks.
Our local covert channel achieves a capacity of 9.73 kB/s (n = 100, σµ̄ =

0.00097%).

Setup. We create a simple key-value store that communicates via UNIX
sockets. The store takes input from a client and stores it on a 4 kB-
aligned page. The sender inserts a key and value into the first page to
communicate with the server. The receiver inserts a small key and value
as well, which should be placed on the same 4 kB page. If the 4 kB-page is
fully written, the key-value store compresses the whole page. Compressing
full 4 kB-page separately also occurs on filesystems like BTRFS [12].

Sender and receiver agree on a time frame to send and read content. The
basic idea is to communicate via the observation on zlib that memory with
low entropy, e.g., 4096 times the same value, requires more time when
decompressing compared to pages with a higher entropy, e.g., repeating
sequence number from 0 to 255. Note that the content of the page
controlled by the receiver is co-located to the senders controlled part.
Figure 9.5 shows the histogram of latency when decompression is triggered
for both cases for the key-value on an Intel i7-6700K running at 4 GHz.
On average, we observe a timing difference of 3566.22 ns (14 264.88 cycles,
n = 100000).
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Figure 9.5.: Timing when decompressing a zlib-compressed 4 kB page with high
entropy compared to a page with low entropy.

Transmission. We evaluate our cross-core covert channel by generating
and sending random content from /dev/urandom through the memory
compression timing side channel. The sender controls 4095 B of a 4 kB page.
The sender transmits a ‘1’-bit by performing a store with high-entropy
data. Conversely, to transmit a ‘0’-bit, the sender stores a low-entropy
data. To trigger the compression, the receiver also stores data in the store
which fills a full 4 kB page. The key-value store compresses the entire 4 kB
page, as it is fully used. The receiver performs a fetch request from the
key-value store, which triggers a decompression of the full 4 kB page. To
distinguish bits, the receiver measures the mean RTT of the fetch request.

Evaluation. Our test machine uses an Intel Core i7-6700K (Ubuntu
20.04, kernel 5.4.0), and all cores are running on a fixed CPU frequency
of 4 GHz. We repeat the transmission 50 times and send 640 B per run.
To reduce the error rate, the receiver fetches the receiver-controlled data
50 times and compares the average response time against the threshold.
Our cross-core covert channel achieves an average transmission rate of
9.73 kB/s (n = 100, σµ̄ = 0.0068%) with an error rate of 0.082 % (n = 100,
σµ̄ = 0.023%). The capacity of the unoptimized covert channel is in line
with other state-of-the-art microarchitectural cross-core covert channels
that do not rely on shared memory [19, 45, 48, 61, 64, 72, 81, 83].
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9.6.2. Remote Covert Channel

We extend the scope of our covert channel to a remote covert channel. In
the remote scenario, we rely on Memcached on a web server for memory
compression and decompression.

Memcached. Memcached is a widely used caching system for web
sites [49]. Memcached is a simple key-value store that internally uses a
slab allocator. A slab is a fixed unit of contiguous physical memory, which
is assigned to a certain slab class which is typically a 1 MB region [36].
PHP offers the possibility to use Memcached for caching, and memory
compression is enabled by default if Memcached is used [62]. PHP-
Memcached has a threshold that decides at which size data is compressed,
with the default value being 2000 B. Furthermore, PHP-Memcached
compares the compression ratio to a compression factor and decides
whether it stores the data compressed or uncompressed in Memcached.
The default value for the compression factor is 1.3, i.e., 23 % of the space
needs to be saved from the original data size to store it compressed [62].

Bypassing the Compression Factor. While the compression factor
already introduces a timing side channel, we focus on scenarios where data
is always compressed. This is used in Section 9.6.3 useful for leaking co-
located data. Intuitively, it should suffice to prepend highly-compressible
data to enforce compression. However, we found that only prepending
and adopting the offsets for secret repetitions, as for zlib, also influenced
the corner case we found and the large timing difference. We integrate
prepending of compressible pages to Comprezzor and also add the com-
pression factor constraint to automatically discover inputs that fulfills the
constraint and leads to large latencies between a correct and incorrect
guess.

Transmission. We use the page found by Comprezzor that triggers a
significantly lower decompression time to encode a ‘1’-bit. For a ‘0’-bit,
we choose content that triggers a significantly higher decompression time.
The sender places a key-value pair for each bit index at once into PHP-
Memcached. The receiver sends GET requests to the resource, causing
decompression of the data containing the sender content. The timing
difference of the decompression is reflected in the RTT of the HTTP
request. Hence, we measure the timing difference between the sent HTTP
request and the first received response.
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Figure 9.6.: Distribution of HTTP response times for zlib-decompressed pages
stored in Memcached on memory compression encoding a ‘1’ and
a ‘0’-bit.

Evaluation. Our sender and receiver use an Intel i7-6700K (Ubuntu
20.04, kernel 5.4.0) and connect to the internet with a 10 Gbit/s connection.
For the web server, we use a dedicated server in the compression:Equinix

1

cloud, 14 hops away from our network (over 700 miles physical distance)
with a 10 Gbit/s connection. The victim server uses an Intel Xeon E3-1240
v5 (Ubuntu 20.04, kernel 5.4.0). Our server runs Nginx 1.18.0, with a
PHP (version 7.4, FPM enabled) website that allows storing and retrieving
data, backed by Memcached 1.5.22, the default version on Ubuntu 20.04.
We perform a simple test where we perform 5000 HTTP requests to a
PHP site that stores zlib-compressed memory in Memcached. Figure 9.6
illustrates the timing difference between a ‘0’-bit and a ‘1’-bit. The timing
difference between the mean values for a ‘0’- and ‘1’-bit is 61 622.042 ns.
We transmit a series of random messages of 8 B over the internet. Our
simple remote covert channel achieves an average transmission rate of
10.72 bit/min (n = 20, σµ̄ = 15.96%) at an average error rate of 0.93 %.
We achieve a similar transmission rate as Schwarzl et al. [71] with remote
memory-deduplication attacks. Our covert channel outperforms the one
by Schwarz et al. [70] and Gruss et al. [29], even though our attack works
with HTTP instead of the more lightweight UDP sockets. Other remote
timing attacks usually do not evaluate their capacity with a remote covert
channel [1, 4, 37, 68, 76, 88]. Note that our numbers to mount a successful
covert channel over such a distance is way below the numbers reported by
Van Goethem et al. [76, Table 1].

9.6.3. Remote Attack on PHP-Memcached

Using our building blocks to perform Decomp+Time and the remote
covert channel, we perform a remote attack on PHP-Memcached to leak

1
https://equinix.com
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Figure 9.7.: Distribution of the response times for the correct byte guess (S)
and the incorrect guesses (0-9, A-R, T-Z) leaking the secret from
PHP-Memcached. Subsequent bytes are similar (cf. Section E).
Standard error margins are below 1 % of the value for all guesses
and, thus, not visible in the plot.

secret data from a server over the internet. We assume a memory layout
where secret memory is co-located to attacker-controlled memory, and
the overall memory region is compressed. As mentioned in Figure 9.1, we
assume that the attacks can arbitrarily co-locate arbitrary data to secret
data. This is reasonable as the developer might store additional metadata,
e.g., API keys co-located to the attacker-controlled data, or might make
some modifications. Also, structured document data might be cached
within the same memory slab as the API of Memcached does not prevent
an user from merging data of multiple users together. The compressed
data is never visible to the user, and the compression ratio is not exposed,
relying on the compression ratio is not possible.

Attack Setup. We use the same setup as in Section 9.6.2 and run
the attack using the same server setup as used for the remote covert
channel. We define a 6 B long secret (SECRET) with a 7 B long prefix
(cookie=) and prepend it to the stored data of users. PHP-Memcached
compresses the data before storing it in Memcached and decompress it
when accessing it again. For each guess, the PHP application stores the
uploaded data to a certain location in Memcached. On each data fetch, the
PHP application decompresses the secret data together with the co-located
attacker-controlled data and then responds only the attacker-controlled
data. The attacker measures the RTTs and discerns the timing differences
between the guesses.

Evaluation. For the byte-wise attack, we assume each byte of the secret
is uppercase alphanumeric (36 different options). For each of the bytes
to be leaked, we generate separate memory layouts using Comprezzor
that maximize the latency between guesses. We repeat the experiment 20
times. On average, our attack leaks the entire secret string in 31.95 min
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(n = 20, σµ̄ = 60.58%) i.e., 5.32 minutes per byte or 1.5 bit/min. Since the
latencies between a correct and incorrect guess are in the microseconds
range, we do not observe false positives with our approach. Figure 9.7
shows the median response time for each guess in the first iteration as
a representative example. It can be seen that the response time for the
correct guess is significantly faster than the incorrect guesses.

Takeaway: We show that a PHP application using Memcached to cache
blobs hosted on Nginx enables covert communication with a transmission
rate of 10.72 bit/min (answers Q2). Moreover, we demonstrate a remote
memory-compression attack on Memcached leaking 1.5 bit/min.

9.6.4. Leaking Data from Compressed Databases

In this section, we show that an attacker can exploit compression in
databases to leak inaccessible information from the internal database
compression of PostgreSQL. In this setting, the compression ratio is not
visible to the attacker, only the timing can be observed. A potential
attack scenario for structured text in a cell is where JSON documents
are stored and compressed within a single cell, and the attacker controls
a specific field within the document. While our focus is restricted to
cell-level compression, compressed columnar storage [5, 15, 50, 57] or
columnar databases, may also be vulnerable to decompression timing
attacks. The attacker controls data in the same cell or the content of a
cell in the same column as the target data.

PostgreSQL Data Compression. PostgreSQL is a widespread open-
source relational database system using the SQL standard. PostgreSQL
maintains tuples saved on disk using a fixed page size of commonly 8 kB,
storing larger fields compressed and possibly split into multiple pages. By
default, variable-length fields that may produce large values, e.g., TEXT
fields, are stored compressed. PostgreSQL’s transparent compression is
known as TOAST (The Oversized-Attribute Storage Technique) and uses a
fast LZ-family compression, PGLZ [63]. Data in a cell is stored compressed
if such a form saves at least 25 % of the uncompressed size to avoid wasting
decompression time. Data stored uncompressed is accessed faster than
data stored compressed as the decompression algorithm is not executed.

Attack Setup. To assess the feasibility of an attack, we use a local
database server with the database stored on an SSD and access two
differently compressed rows with a Python wrapper using the psycopg2
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library. The first row contains 8192 characters of highly compressible
data, while the second one 8192 characters of random incompressible
data. Both rows are stored in a table as TEXT data and accessed 1000
times. The median for the number of clock cycles required to access the
compressible row is 249 031, while for the uncompressed one is 221 000,
which makes the two accesses distinguishable. On our 4 GHz CPUs, this
is a timing difference of 7007.75 ns. We use Comprezzor to amplify these
timing differences and demonstrate bytewise leakage.

Leaking First Byte. For the bytewise leakage of the secret, we first
create a memory layout to leak the first byte using Comprezzor against a
standalone version of PostgreSQL’s compression library, using a similar
setup as the previous Memcached attack. A key difference in the use of
Comprezzor with PostgreSQL is that the helper program measuring the
decompression time returns a time of 0 when the input is not compressed,
i.e., the data compressed with PGLZ does not save at least 25 % of the
original size. Comprezzor found a layout that sits exactly at the corner
case where a correct guess in the secret results in a compressed size that
saves 25 % of the original size. Hence, a correct guess is saved compressed,
while for any wrong guess, the data is saved uncompressed.

Leaking Subsequent Bytes with Secret Shifting. We observed that
one good layout can be reused for bytewise leakage in PGLZ. The prefix
can be shifted by one character to the left by a single character, i.e., from
“cookie=S” to “ookie=SE”, to accommodate an additional byte for the
guess. Shifting allows bytewise leakage with the same memory layout.
Note that we could not mount this shifting approach on DEFLATE.

Evaluation. We perform a remote decompression timing attack against
a Flask [22] web server that uses a PostgreSQL database to store user-
provided data. We used the same compression:Equinix cloud-server setup
as used for the Memcached remote attack (cf. Section 9.6.3). The server
runs Python 3.8.5 with Flask 2.0.1 and PostgreSQL 12.7. We use a similar
setup as in Section 9.6.3 with the difference that attacker-controlled data
is co-located to a secret in a database cell. The secret is never shown
to the user. Using the layout found by Comprezzor, the entry in the
database is stored compressed only when the secret matches the provided
data. A second endpoint in the server accesses the database to read
the data without returning the secret to the attacker. The attack leaks
bytewise over the internet by guessing again uppercase alphanumeric
characters (36 possibilities per character), including the correct one. We
repeat the attack 20 times. The average time for the attack, i.e., the
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Figure 9.8.: Distribution of response times for the bytewise leakage in the remote
PostgreSQL attack, with the correct guess (S) and incorrect guesses
(0-9, A-R, T-Z). This is similar for subsequent bytes leaked (cf.
Section E). Standard error margins are below 1 % for all guesses
and, thus, not visible in the plot.

time required to determine the guess with the highest latency that the
server had to decompress before returning, is 17.84 min (2.97 min/B)
(n = 20, σµ̄ = 0.33%) i.e., 2.69 bit/min. Figure 9.8 illustrates the median
response times showing how the correct guess results in a slower response.
Without fixing the CPU frequency, twice as many requests are required
to clearly determine the correct secret. However, keeping the server busy
automatically leads to an almost constant frequency. We guess over the
set of all printable characters and observe one secret byte in 7.83 min.

Takeaway: Secrets can be leaked from databases due to timing differ-
ences caused by PostgreSQL’s transparent compression, if applications
store untrusted data with secrets in the same cell. Our decompression
timing attack on PostgreSQL leaks a byte across the internet with
2.69 bit/min.

9.6.5. Attacking OS Memory Compression

In this section, we show how memory compression in modern OSs can
introduce exploitable timing differences. We demonstrate bytewise leakage
of secrets from compressed pages in ZRAM, the Linux implementation of
memory compression. Co-location can be achieved here if virtual memory
is compressed together with mostly attacker-controlled data. As we show
in Section 9.6.6, co-location can occur for internal pointers in the V8
engine, together with attacker-controlled data. The compression ratio
is not observable for the attacker since the attacker cannot read the
compressed memory from ZRAM.
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Background. Memory compression is a technique used in many modern
OSs, e.g., Linux [42], Windows [35], or MacOS [17]. Similar to traditional
swapping, memory compression increases the effective memory capacity
of a system. When processes require more memory than available, the
OS can transparently compress unused pages in DRAM to ensure they
occupy a smaller footprint in DRAM rather than swapping them to disk.
This frees up memory while still allowing the compressed pages to be
accessed from DRAM. Compared to disk I/O, DRAM access is an order of
magnitude faster, and even with the additional decompression overhead,
memory compression is significantly faster than swapping. Hence, memory
compression can improve the performance despite the additional CPU
cycles required for compression and decompression. The Linux kernel
implements ZRAM [33], enabled by default on Fedora [42] and Chrome
OS [17].

Characterizing Timing Differences in ZRAM

To understand how memory compression can be exploited, we characterize
its behavior in ZRAM. On Linux systems, ZRAM appears as a DRAM-
backed block device. When pages need to be swapped to free up memory,
they are instead compressed and moved to ZRAM. Subsequent accesses
to data in ZRAM result in a page fault, and the page is decompressed
from ZRAM and copied to a regular DRAM page for use again. We
show that the time to access data from a ZRAM page depends on its
compressibility and thus the data values. According to the previous
experiments, we characterize the latency of accessing data from ZRAM
pages with different entropy levels: pages that are incompressible (with
random bytes), partially-compressible (random values for 2048 bytes and a
fixed value repeated for the remaining 2048 bytes), and fully-compressible
(a fixed value in each of the 4096 bytes). We ensure a page is moved
to ZRAM by accessing more memory than the memory limit allows. To
ensure fast run times for the proof of concept, we allocate the process
to a cgroup with a memory limit of a few megabytes. We measure the
latency for accessing a 8-byte word from the page in ZRAM, and repeat
this process 500 times. Table 9.2 shows the mean latency of ZRAM
accesses for different ZRAM compression algorithms on an Intel i7-6700K
(Ubuntu 20.04, kernel 5.4.0). The latency for accesses to ZRAM is much
higher for partially-compressible pages (with lower entropy) compared to
incompressible pages (with higher entropy) for all compression algorithms.
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Table 9.2.: Mean latency of accesses to ZRAM. Distinguishable timing differ-
ences exist based on data compressibility in the pages (n = 500
and 6 %of samples removed as outliers with more than an order of
magnitude higher latency).

Algorithm Incompressible (ns)
Partly Fully

Compressible (ns) Compressible (ns)

deflate 1763 (±12%) 12 208 (±2%) 1551 (±12%)
842 1789 (±11%) 8785 (±2%) 1556 (±10%)
lzo 1684 (± 9%) 4866 (±4%) 1479 (±12%)
lzo-rle 1647 (± 9%) 4751 (±4%) 1453 (±12%)
zstd 1857 (±10%) 2612 (±9%) 1674 (±11%)
lz4 1710 (±11%) 1990 (±7%) 1470 (±10%)
lz4hc 1746 (± 9%) 2091 (±9%) 1504 (±11%)

This is because the process of moving compressed ZRAM pages to regular
memory on an access requires additional calls to functions that decompress
the page. ZRAM pages that are stored uncompressed do not require these
function calls (cf. Section C). We observe the largest timing difference
for the deflate algorithm (close to 10 000 ns) and 842 algorithm (close
to 7000 ns); we observe moderate timing differences for lzo and lzo-

rle (close to 1000 ns), and zstd (close to 750 ns); the smallest timing
difference are for lz4 and lz4hc (close to 250 ns). These timing differences
largely correspond with the algorithm’s raw decompression latency (cf.
Table 9.1). Accesses to a fully-compressible page in ZRAM, i.e., a page
containing the same byte repeatedly, are faster (by 200 ns) than accesses
to an incompressible page for all the compression algorithms. This is
because ZRAM stores such pages with a special encoding as a single-byte
(independent of the compression algorithm) that only requires reading a
single byte from ZRAM on an access to such a page.

Leaking Secrets via ZRAM Decompression Timings

In this section, we exploit timing differences between accesses to a partially-
compressible and an incompressible page in ZRAM (using deflate algo-
rithm) and use Comprezzor to leak secrets byte-by-byte.



9.6. Case Studies 247

coo
kie=

0

coo
kie=

5

coo
kie=

9

coo
kie=

A

coo
kie=

H

coo
kie=

M

coo
kie

=S
coo

kie=
Z

0
0.5
1

1.5
⋅104

T
im

in
g
[n
s]

Figure 9.9.: Times for guesses (0-9, A-Z) for the first byte (S) of the secret
leaked byte-wise from ZRAM. The highest times correspond to the
secret-byte value (shown in red). Standard error margins are below
1 % of the value for all guesses and, thus, not visible in the plot.

Attack Setup. We demonstrate byte-wise leakage attack on a program
with a 4 kB page stored in ZRAM containing both a secret value and
attacker-controlled data, as is common in many applications like databases.
To determine optimal data layouts an attacker might use, we combine this
program with Comprezzor. With a known secret value, Comprezzor runs
the program with the attacker guessing each byte position successively. For
each byte position, Comprezzor generates the optimal memory layouts. In
such an optimal layout, when the attacker’s guess matches the secret-byte,
the page entropy reduces (page is partially compressible), and ZRAM
decompression takes longer; and for all other guesses, the entropy is high,
and ZRAM decompression is fast. We repeat this process to generate
optimal data layouts for each byte position. Note that this optimal data
layout only relies on the number of repetitions of the guess and the relative
position of the guessed data and the secret (a property of the compression
algorithm), and is applicable with any data values. Using these attacker
data layouts, we perform byte-wise leakage of an unknown secret. At
each step, the attacker guesses one byte (0-9, A-Z) and denotes the guess
with the highest latency as correct. We repeat this attack for 100 random
secrets.

Evaluation. Figure 9.9 shows the bytewise leakage for a secret value
(cookie=SECRET), with the decompression times for guesses of the first
four bytes depicted in each of the graphs. For each byte, among guesses
of (0-9, A-Z), the highest decompression time successfully leaks the secret
byte value (shown in red). For example, for byte 0, the highest time is for
cookie=S. Similar trends are observed for the remaining bytes, as shown
in the Figure 9.14 in Section E for byte 1, the highest latency is observed
for cookie=SE. For byte 2, we observe a false positive, cookie=SE8, which
also has a high latency, along with the correct guess cookie=SEC. But in
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the subsequent byte 3, when both these strings are used as prefixes for the
guesses, the false positives are eliminated, and cookie=SECR is obtained as
the correct guess. The next two bytes are also successfully leaked to fully
obtain cookie=SECRET, as shown in the Figure 9.14 in Section E. Repeating
the experiment with 100 randomly generated secrets, we observe that in 90
out of 100 cases, the secret is leaked successfully. Our attack successfully
completes in 58.6 s (n = 90, σµ̄ = 642.22%) on average, i.e., 49.14 bit/min.
In 9 out of the 10 remaining cases, we narrow down the secret to within
four candidates (due to false positives for the last-byte guess), and in the
last case, we recover 4 bytes out of the 6-byte secret (the false positives
grow for the 5th byte and beyond in this case). The false positives in
our ZRAM PoC are caused by the Comprezzor-generated data layouts
that are not as robust as in previous PoCs. Comprezzor with ZRAM is
a few orders of magnitude slower (almost 0.03x the speed) compared to
iterations with raw algorithms studied in Section 9.5.2. Moving a page to
ZRAM and compressing it requires accessing sufficient memory to swap
the page out, which is much slower than executing just the compression
algorithm. Consequently, the explored search space is smaller. Such false
positives can be addressed by using multiple strong data layouts, or by
fuzzing for a longer duration to generate more robust data layouts.

9.6.6. Leaking Heap Pointers from Google Chrome

For exploits in Javascript environments like V8 in Chrome, breaking
memory randomization is often the first step. Such ASLR breaks usually
rely on information leaks to disclose pointers from V8 isolates. However,
vulnerabilities like out-of-bound reads that allow information leaks are
promptly patched when discovered. In this section, we use our side channel
to disclose a heap pointer and thus break heap-memory randomization.
We assume a Chrome browser running on a device with ZRAM enabled.
We run our experiments on a notebook equipped with an Intel i5-8250U
CPU and 16 GB DDR4 RAM running Ubuntu 20.04 (kernel 5.4.0-124-
lowlatency) and Google Chrome 90.0.4430.72. We setup a 4 GB ZRAM
device as swap partition with the deflate algorithm.

Co-Location. The first major requirement to leak a pointer is co-
location between attacker-controlled data and a heap pointer (secret) on a
4 kB page. In JavaScript, elements of TypedArrays (e.g., Uint8Array) are
memory-backed by an ArrayBuffer object. A backing heap pointer points
to the location where the ArrayBuffer stores the data in memory [11]. All
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such 64-bit values in JavaScript (including pointers) are encoded using the
IEE754 floating-point representation. Hence, to store a pointer in memory,
non-typed arrays of numbers encoding 64-bit pointers are used. Thus
attacker-controlled numbers and secret heap-pointers (to TypedArray)
can be co-located in a non-TypedArray, leading to the desired co-location
of attacker data and the target pointer. We massage the allocations such
that the target pointer is at the beginning of a 4 kB page. Listing 9.8.2
illustrates a snippet that co-locates the backing pointer of a TypedArray

with a mostly attacker-controlled 4 kB region. Listing 9.8.3 is a memory
dump showing the resultant co-location within the memory of a Chrome
process. The resultant layout is indeed dependant on Chrome’s allocator
and may not always be the same. So, we measure which offsets we get
with repeated runs of the same code snippet. For the same pointer, we
observe that offsets of 0x0 or 0xc0 within the page occur in 84 % of the
allocations (cf. Section F). Using Comprezzor, we can generate memory
layouts for different byte offsets of the pointers with our setup. Note that
the 32-bit compressed-pointers V8 uses to refer to objects in the same
isolate are not randomized for each execution and do not affect our attack.

Timer. Similar to previous work [28, 41, 69, 79], we use a WebWorker
counting thread via a SharedArrayBuffer. As the server is attacker-
controlled, re-enabling SharedArrayBuffer is possible via HTTP head-
ers [53, 80]. This timer is sufficient to measure timing differences between
correct and incorrect byte guesses.

Trigger Swapping from JavaScript. The default swapiness value
for Ubuntu 20.04 is 60. This means that if 80 % of memory is used, the
kernel starts to perform swapping.Therefore, to swap the target data from
RAM to the ZRAM swap device area, the attacker has to create high
memory pressure. As the heap size per process is limited to 4 GB, this can
be challenging. One approach an attacker can adopt is to spawn multiple
processes to achieve the desired memory pressure. We observe that
every iframe gets a separate renderer process, therefore, a higher memory
pressure can be achieved. However, iframes from same domains (including
subdomains) might get merged back into a similar process [2]. This could
lead to the main tab crashing as the memory limit per tab is exceeded.
Therefore, the attacker requires to use multiple iframes embedding content
from different web servers to trigger swapping reliably. As Cross-Origin-
Embedder-Policy is set to cross-domain, the server under the attackers
control requires to set the Cross-Origin-Resource-Policy to cross-

origin [80]. Each of the domains can allocate about 4 GB. Therefore,
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to trigger swapping frequently, 4 additional remote servers from different
domains are required. To ensure that the target is always evicted, we
delete the iframes and repeat the allocation a second time. Note that
this is the worst case scenario, assuming an idle system. Other system
activity can only increase the probability of swapping out target pages.
We run an experiment which constantly loads an iframe and tries to evict
a certain target page. To successfully evict the target page from memory,
the attacker requires, on average, 14.91 s (n = 100, σx̄ = 7.59%).

Total Attack Runtime. The attacker has to guess all 256 possibilities
per byte to leak the correct pointer. We use Comprezzor to generate
layouts for the 6 byte offsets. To get stable results, 20 measurements per
guess are required. Therefore, leaking a single byte requires about 20 s for
the swapping part in JavaScript and about one second for evaluating the
memory layout, leading to 21 s per guess. This leads to a total runtime of
29.8 h (21 s * 20 (tries per guess) * 256 = 107520/3600 = 29.8h) per byte.
An attacker can invest additional engineering effort to perform multiple
guesses in one iteration. Then, the theoretical runtime is only 7 min (21 s
* 20 / 60 = 7m) per byte.

Takeaway: We show that even if an application does not explicitly use
compression, its data may still get compressed by the OS due to memory
compression. We demonstrate a local attack leaking 49.14 bit/min and
port the attack to JavaScript leaking heap pointers in Google Chrome.

9.7. Mitigations

Taint tracking. The best strategy to mitigate compression side channels
is to avoid sensitive data being with potential attacker-controlled data.
Mutexion [52] enforces mutually exclusive compression between attacker-
controlled data and secret data in HTTP. This approach uses automated
annotations of secret and attacker-controlled data. However, finding all
the sources and sinks can be a complex problem for software developers,
especially in large and complex software projects. Taint tracking tries to
trace the data flow and mark input sources and their sinks. Paulsen et al.
[58] use taint analysis to track the flow of secret data before feeding data
into the compression algorithm. Their tool, Debreach, is about 2-5 times
faster than SafeDeflate [58]. However, it is only compatible with PHP,
and the developer needs to flag the sensitive input which is being tracked.
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Disabling LZ77. A naive solution is to disable compression or at least
disable the LZ77 part. Karakostas et al. [38] showed for web pages that,
this adds an overhead between 91 % and 500 %. Furthermore, attacks on
symbol compression have not been studied well enough to provide security
guarantees.

Mitigating the Timing Side Channel. Constant time implementa-
tions might remove the timing side channel [3, 47, 60]. There are several
solutions to automatically transform code into a constant-time version to
mitigate side channels [10, 13, 44, 74, 82]. However, such solutions usually
rely on code linearization, executing both the taken and not-taken path of
branches. While this is feasible for cryptographic implementations with a
limited number of branches, compression algorithms have too many input-
dependent branches. Moreover, the overhead of decompression might get
considerably worse without the optimization of copying incompressible
data during decompression. Thus, the mitigation can perform worse than
fully disabling sequence compression.

Masking. Karakostas et al. [38] presented a generic defense technique
called Context Transformation Extension (CTX). The general idea is to
use context-hiding to protect secrets from being compressed with attacker-
controlled data. Data is permuted on the server side using a mask, and on
the client side, an inverse permutation is performed (JavaScript library).
The overhead compared to the original algorithms decrease with the
number of compressed data [38].

Duplicating secrets. As Decomp+Time uses the generated layouts
by Comprezzor, the guess is placed multiple times to trigger edge cases.
Placing the secret multiple times might already be effective enough to
mitigate Decomp+Time. We leave it as future work to evaluate the
effectiveness.

Randomization. Yang et al. [84] showed an approach with randomized
input to mitigate compression side-channel attacks. The service would
require adding an additional amount of random data to hide the size of the
compressed memory. However, as the authors also show, randomization-
based approaches can be defeated at the expense of a higher execution
time. Also, Karaskostas et al. [38] showed that size randomization is
ineffective against memory compression attacks. It is also unclear if size
randomization mitigates the timing-based side channel of the memory
decompression.
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Keyword protection. Zieliński demonstrated an implementation of
DEFLATE called SafeDeflate [89]. SafeDeflate mitigates memory compres-
sion attacks by splitting the set of keywords into subsets of sensitive and
non-sensitive keywords. Depending on the completeness of the sensitive
keyword list, this approach can be considered as secure. As Paulsen et al.
[58] mention, it is easy to overlook a corner case. Furthermore, this
approach leads to a loss of compression ratio of about 200 % to 400 % [38].

The aforementioned mitigations focus on mitigating compression-ratio
side channels. As the compression and decompression timings are not
constant, a timing side channel is harder to mitigate. Since the latency
for a correct guess is in the region of microseconds, not many requests
(≤ 200) are required per guess to distinguish the latency. Therefore, in a
remote setting, a simple DDoS detection might detect an attack but only
after a certain amount of data being leaked.

9.8. Conclusion

In this paper, we presented Decomp+Time, a timing side-channel attack
on several memory-compression algorithms. We developed Comprezzor,
an evolutionary fuzzer to amplify timing latencies when performing attacks
on different compression algorithms. Our remote covert channel achieves a
transmission rate of 9.73 kB/s locally and 10.72 bit/min over the internet
(14 hops, > 700 miles). We showed bytewise leakage with a leakage rate of
1.50 bit/min across the internet from a server using Memcached hosting,
a PHP application. We leaked database records from PostgreSQL with
2.69 bit/min. We showed that we can locally attack ZRAM on Linux
and leak heap pointers from Google Chrome. Our results show that
compression of sensitive data can be dangerous even if the compressed
data is not directly observable.
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Appendix

A. Comprezzor-discovered Timing Differences

Table 9.3 shows the timing differences discovered by Comprezzor for
different compression algorithms. These results are a result of running
Comprezzor with 50 epochs and a population of 1000 samples per epoch.
We set the retention factor to 5 %, selecting the best 50 samples in each
generation of 1000 samples. We randomly mutate the selected samples
to generate 70 % of the children and add 25 % of completely randomly
generated layouts in the new generation.

B. Timing Difference for Compression

Table 9.4 shows the timing differences when compressing incompressible,
partially incompressible, and fully-compressible memory. The execution
time and, thus, latency depends on the level of compressibility. For
compressible memory, the timing is lower, which may appear counter-
intuitive, but it means higher redundancy in the data and, thus, e.g.,
smaller Huffman trees and fewer sequences. For incompressible memory,
the opposite case occurs, with more sequences and a larger tree, consuming
more computation time. Additionally, when the compression ratio for a
block is then too low, the compression is discarded, and additional memcpy
operations are performed instead. All of this consumes computation time,
leading to the timing differences we see in Table 9.4. For the intermediate
case of partially incompressible data, both cases occur for part of the blocks
leading to an intermediate timing. However, observing the compression
time can be difficult, as no request or operation latency observable by
the attacker depends on the compression time. Hence, we we focused on
attacks exploiting the decompression timing side channel.



254
Chapter 9. Practical Timing Side Channel Attacks on Memory

Compression

Table 9.3.: Timing differences between correct and incorrect guesses found by
Comprezzor and the corresponding runtime.

Algorithm Max difference for correct guess (ns) Runtime (h)

PGLZ 109233.25 2.09
zlib 71514.75 2.46
zstd 4239.25 1.73
LZ4 2530.50 1.64

Table 9.4.: Different compression algorithms yield distinguishable timing dif-
ferences when compressing content with a different entropy. (n =

100000

Algorithm
Fully Partially

Incompressible (ns)
Compressible (ns) Compressible (ns)

FastLZ 38 619.07 (±0.74%) 58 887.40 (±0.50%) 79 384.89 (±0.40%)
LZ4 44 748.02 (±0.15%) 47 731.08 (±0.16%) 47 316.56 (±0.16%)

LZO 5645.86 (±2.18%) 5915.28 (±2.78%) 7928.21 (±3.91%)
PGLZ 44 275.84 (±0.13%) 65 752.55 (±0.12%) -

zlib 38 479.53 (±0.22%) 80 284.72 (±0.23%) 76 973.82 (±0.20%)
zstd 3596.41 (±0.42%) 22 288.14 (±0.52%) 29 284.77 (±0.34%)

C. Kernel Trace for ZRAM Decompression

To highlight the root cause of the timing differences in ZRAM accesses,
we trace the kernel functions called on accesses to ZRAM pages using the
ftrace [67] utility. Listing 9.8.1 shows the trace of kernel functions called
on an access to an incompressible and compressible page in ZRAM. The
incompressible page contains random bytes, while the compressible page
contains 2048 bytes of the same value and 2048 random bytes, similar
to the partially-compressible setting in Section 9.6.5. We only list the
functions which are called when the ZRAM page is swapped in to regular
memory.

The main difference between the two cases (colored in red) is that the
functions performing decompression of the ZRAM page are only called
when a compressible page is swapped-in, while these functions are skipped
for the page stored uncompressed. As the operating system knows from the
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stored meta-data whether the page is stored compressed or uncompressed
and can skip the corresponding functions for uncompressed pages. Of
these additional function calls, the main driver of the timing difference
is the deflate decompress function in Listing 9.8.1 which consumes
12555 ns. This ties in with the characterization study in Section 9.6.5 which
showed the average timing difference between accesses to compressible
and incompressible pages to be close to 10000 ns for ZRAM with deflate
algorithm. These timings are for the deflate implementation in the Linux
kernel, a modified version of zlib v1.1.3; hence these timings differ from
the zlib timings in Table 9.1 for the more recent zlib v1.2.11.

1 Incomp.(ns) Comp.(ns) Function
2 Incomp .(ns) Comp.(ns) Function
3 0 0 swap_readpage
4 62 61 page_swap_info
5 126 123 __frontswap_load
6 195 188 __page_file_index
7 254 248 bdev_read_page
8 326 310 blk_queue_enter
9 395 379 zram_rw_page

10 460 442 zram_bvec_rw.isra.0
11 527 505 generic_start_io_acct
12 590 575 update_io_ticks
13 661 634 part_inc_in_flight
14 729 755 __zram_bvec_read.constprop.
15 813 838 zs_map_object
16 967 1040 _raw_read_lock
17 - 1229 zcomp_stream_get
18 - 1306 zcomp_decompress
19 - 1373 crypto_decompress
20 - 1433 deflate_decompress
21 - 1499 __deflate_decompress
22 - 14053 zcomp_stream_put

Listing 9.8.1.: Kernel function trace for ZRAM access to an incompressible and
compressible page.

D. Layout Discovered by Comprezzor

Figure 9.10 shows the layout discovered by the Comprezzor that amplifies
the timing difference for decompression of the correct and incorrect guesses
in Zlib dictionary attack. Note that for correct guesses, the entire guess
string, i.e., cookie=SECRET, is compressed with the secret string. And
as discussed in Section 9.5.2, the subsequent data is incompressible and
invokes only a single memcpy operation, which faster than Huffman or LZ77
decoding. For wrong guesses, only the prefix is compressed, introducing
the timing difference we exploit. Listing 9.11a and Listing 9.11b show
the debug trace from the Zlib code for decompression with the correct
and incorrect guesses to illustrate the root cause of the timing differences.



256
Chapter 9. Practical Timing Side Channel Attacks on Memory

Compression

Correct guess

Incorrect
guess

cookie=SECRET

ptr to cookie=SECRET x n

Incompressible data

cookie=SECRET

ptr to cookie= FOOBARptr to cookie=FOOBAR x n

Incompressible data

New Dynamic Huffmann Block Stored Block

Figure 9.10.: Incorrect guesses with the corner case discovered by Comprez-
zor lead to a dynamic Huffman block creation for the partially-
compressible data that is slow to decompress.

On a decompression, this block must now undergo the Huffman decoding
(and LZ77), which results in several table lookups, memory accesses, and
higher latency.

E. Bytewise Leakage

Figure 9.12 illustrates the bytewise leakage of the secret (SECRET) for a
PHP application using PHP-Memcached. Figure 9.13 shows the bytewise
of the secret string for a Flask application that stores secret data together
with attacker-controlled data into PostgreSQL. The prefix value can be
shifted bytewise, which allows reusing the same memory layouts found by
Comprezzor. Figure 9.14 shows the last two bytes leaked from a secret
(SECRET) in a ZRAM page. This is a continuation of Figure 9.9 which
showed the leakage of the first four bytes. All three cases expose extremely
high timing differences with an orders-of-magnitude gap between the
correct and wrong guesses. The standard error margins are below 1 % for
all guesses.
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1 length 12

2 distance 16484

3 literal 0x17

4 length 13

5 distance 14

6 literal 0xb3

7 length 13

8 distance 14

9 literal ’x’

10 length 13

11 distance 14

12 literal 0x05

13 length 13

14 distance 14

15 literal 0xa9

16 length 13

17 distance 14

18 literal 0x81

19 length 13

20 distance 14

21 literal ’[’

22 stored block (last)

23 stored length 16186

24 stored end

25 check matches trailer

26 end

(a) Trace for correct guess in zlib. Here the entire guess string is compressed, and the
remainder is incompressible (decompressed fast as a stored block).

1 length 6

2 distance 16484

3 literal ’F’

4 literal ’O’

5 literal ’O’

6 literal ’B’

7 literal ’A’

8 literal ’R’

9 literal 0x17

10 length 13

11 distance 14

12 literal 0xb3

13 length 13

14 distance 14

15 literal ’x’

16 length 13

17 distance 14

18 literal 0x05

19 dynamic codes block (last)

20 table sizes ok

21 code lengths ok

22 codes ok

(b) Trace for incorrect guess in zlib. Here only part of the guess string (cookie=) is
compressed, and the remainder cookie=FOOBAR is separately compressed (decom-
pression requires a slower code block for Huffman tree decoding).

Figure 9.11.: Zlib traces for compression
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Figure 9.12.: Bytewise leakage of the secret (S,E,C,R,E,T) from PHP-
Memcached. In each plot, the lowest timing (shown in red)
indicates the correct guess. Standard error margins are below 1 %
of the values and, thus, not visible in the plot.
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Figure 9.13.: Bytewise leakage of the secret (S,E,C,R,E,T) from PostgreSQL.
The known prefix (cookie=) is shifted left by 1 character in each
step, allowing the same memory layout to be reused. In each
plot, the highest timing (shown in red) indicates the correct guess.
Standard error margins are below 1 % of the values and, thus, not
visible in the plot.
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Figure 9.14.: Bytewise leakage of the secret (S,E,C,R,E,T) from ZRAM. Times
for guesses (0-9, A-Z) for each of the bytes are shown. The highest
value in each plot (shown in red) indicates the correct secret value
for the byte. Standard error margins are below 1 % of the values
and, thus, not visible in the plot.
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F. JavaScript Memory Layout

1 const NUM_VALS = 203;

2 var non_typed_arrays = new Array(NUM_VALS);

3 non_typed_arrays.fill(Object);

4 // inserts target TypedArray including the 64-bit pointer

5 non_typed_arrays[0] = allocTypedArray(4096,0x31);

6 for(var k = 1; k < NUM_VALS; k++) {

7 let colocate_data = [];

8 for (let i = 0; i < 4096; i++) {

9 // itof converts a BigInt to IEE 754

10 // floating-point representation

11 // the suffix n is used to represent a BigInt

12 colocate_data[i] = itof(0xcafebabecafebaben);

13 }

14 non_typed_arrays[k] = colocate_data;

15 triggerGC(); // trigger garbage collection

16 }

17

Listing 9.8.2.: Co-locate V8 heap pointers with attacker-controlled data.

0x0 0xc0 0x38 0x720 0x7c 07e0

0

100

200

Timing [ns]

A
m
o
u
n
t

Figure 9.15.: Pointer offset distribution for multiple allocations in Google
Chrome.
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1 00: 00 00 01 01 58 3c 00 00 30 72 9c 00 58 3c 00 00
2 10: 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
3 20: 00 00 00 00 05 22 04 08 10 00 00 00 b5 23 04 08
4 30: b5 23 04 08 b5 23 04 08 b5 23 04 08 b5 23 04 08
5 40: b5 23 04 08 b5 23 04 08 b5 23 04 08 05 22 04 08
6 50: 10 00 00 00 c1 46 24 08 5d 44 24 08 c1 e7 24 08
7 60: dd 30 25 08 71 c7 24 08 25 f3 24 08 59 d7 24 08
8 70: b1 2a 25 08 99 2a 04 08 a2 22 00 00 ca fe ba be
9 80: ca fe ba be ca fe ba be ca fe ba be ca fe ba be

10 *
11 1000
12 Legend: 00-0f:|64-bit pointers at offset|
13 10-7b:|Static data|, 7c-fff:|Attacker-controlled data
14

Listing 9.8.3.: Memory dump of the target page from Google Chrome after
allocating non-typed and typed arrays and adding them to a
list. The attacker can co-locate two V8 64-bit heap pointers and
attacker-controlled data.

Our allocation script cf. Listing 9.8.2 creates a memory layout such
that a 64-bit heap pointer pointing to the backing store is stored into
a regular JavaScript array (non typed arrays). This can be achieved by
first inserting a TypedArray with the full length of a page in the first slot
of the list. To co-locate attacker-controlled data, the script inserts 4096
64-bit numbers into a regular JavaScript Array (colocate data). This
array will then be inserted into the array containing the 64-bit pointers
(non typed arrays) and the garbage collection will be triggered. As 64-
bit values in JavaScript are represented using the IEE754 floating-point
representation, we use a conversion function itof to encode a 64-bit
hexadecimal pointer to IEE 754 floating-point number. This function
takes the BigInt and stores it into an Float64Array. By dumping the V8
memory we found that a number of 203 elements in the list to a memory
layout, where the attacker controls most of the page and the only data that
varies are the two heap pointers at offset 0. Listing 9.8.3 illustrates the
generated memory layout after running the script from Listing 9.8.2. The
first line (00) shows the 64-bit heap pointers aligned to page offset 0. We
observe that the data between offset (10:) and offset (7c:) is constant and
contains some compressed pointers to JavaScript objects. The data from
offset 7c to 0xfff is fully attacker-controlled indicated in Listing 9.8.3
by the value (0xcafebabe). Using a fixed suffix, the attacker can use
Decomp+Time to leak the correct byte values of the pointer. However,
we do not observe that the heap pointer is always place at page offset 0.
We repeat our experiment 500 times to see the distribution between the
offsets. Moreover, we observe that if only the attacker-controlled data is
modified, the garbage collection does not reorganize the heap. Figure 9.15
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shows the distributions in 47 % of the cases the pointer is positioned at
offset 0. In 37 % of the cases the pointer is located at offset 0xc0. The
remaining 16 % of the positions the pointer was at 4 other locations. The
attacker can train and probe for all of these 4 offsets and spawn multiple
tabs to increase the probabilty of receiving offset 0x0 or 0xc0.
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Layered Binary Templating

Martin Schwarzl, Erik Kraft, Daniel Gruss

Abstract

We present a new generic cache template attack technique, LBTA, layered
binary templating attacks. LBTA uses multiple coarser-grained side
channels to speed up cache-line granularity templating, ranging from
64 B to 2 MB in practice and in theory beyond. We discover first-come-
first-serve data placement and data deduplication during compilation
and linking as novel security issues that introduce side-channel-friendly
binary layouts. We exploit this in inter-keystroke timing attacks and,
depending on the target, even full keylogging attacks

1
, e.g., on Chrome,

Signal, Threema, Discord, and the passky password manager, indicating
that all Chromium-based apps are affected.

10.1. Introduction

Techniques like Flush+Reload [77] advanced cache attacks from crypto-
graphic [4] to non-cryptographic applications operating on secret data
have been the research focus, e.g., breaking ASLR (address-space layout
randomization) [28, 35], attacking secure enclaves [6, 19, 27, 44], spying
on websites and user input [41, 69], and covert channels [42, 53, 76, 77].
In particular, user input, especially keystrokes, has become a popular
attack target for inter-keystroke timing attacks [50, 56, 61]. Gruss et al.
[32] showed that libraries leak more information than just inter-keystroke
timings, e.g., distinguishing groups of keys.

Compilers and linkers [36] can facilitate or even introduce side-channel
leakage [47, 60], invisible on the source level, through optimizations target-
ing runtime, memory footprint, and binary size. Similarly, JIT compilation
can also introduce timing side channels [7]. These side channels are typi-
cally invisible in the source code and often remain undetected. Numerous

1
Demo: The user first announces via Signal messenger to send money to a friend,

then switches to Chrome to visit a banking website and enters the credentials there.
All keystrokes are correctly leaked. https://streamable.com/dgnuwk.

https://streamable.com/dgnuwk
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works explored the automatic identification of cache side-channel leak-
age, albeit with a focus on cryptography and the goal of making code
constant-time [9, 13]. However, for general-purpose applications, e.g.,
browsers, it is not feasible to linearize the entire instruction stream to
constant-time code, especially for different user inputs that trigger vastly
different program behavior. Cache templating takes a practical approach
by scanning for leakage on real systems, providing a leakage template
either to a defender (to close the side channel) or an unprivileged attacker
who maps binaries as shared memory and infers events from side-channel
activity. The templating itself runs on an attacker-controlled system with
full privileges, a binary is mapped into the address space of the templating
process to profile which memory locations show side-channel activity upon
specific events. Since cache templating works with binary offsets it is
entirely unaffected by mechanisms such as ASLR. While the fine cache-line
granularity is beneficial in the attack phase, it also leads to extremely
high templating runtimes. For instance, templating the binary, shared
libraries, and memory-mapped files used by the Chrome browser (about
210 MB) with the published cache template attack tool [32] on our test
system, would take 113.17 days. Unfortunately, this prohibits integration
of cache leakage analysis into development workflows. Hence, we need to
ask the following questions:

Which role does spatial granularity play for template attacks? Does a
coarser granularity bear benefits in the templating phase?

In this paper, we answer both questions with LBTA, Layered Binary
Templating Attack. LBTA introduces the previously unexplored dimension
of spatial granularity into software-based templating attacks. LBTA com-
bines the information of multiple side channels that provide information at
different spatial granularity to accelerate the search for secret-dependent
activity substantially. Our templating starts with the channel with the
most coarse spatial granularity and, based on the activity, uses more
fine-grained spatial granularity to detect the exact location (cache-line
granularity 64 B).

Our evaluation of LBTA on state-of-the-art systems shows that a variety
of hardware and software channels with different granularity are available.
We focus in particular on a combination of a software channel, the page-
cache side channel, with 4 kB granularity, and the cache side channel, with
64 B granularity. Page cache attacks are hardware-agnostic [30], resulting
in cross-platform applicability, i.e., our templater supports both Windows
and Linux with the 4 kB page-cache side channel. We show that this
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two-layered approach already speeds up cache templating [32] by three
orders of magnitude (i.e., 1848x).

We evaluate LBTA on different software projects, including Chrome,
Firefox, and LibreOffice Writer. The most significant finding is that first-
come-first-serve data placement and data deduplication during
compilation and linking during compilation and linking introduce side-
channel-friendly binary layouts, with spatial distances of multiple 4 kB
pages between key-dependent data accessed during a keystroke. Using
LBTA [62], we find distinct leakage for all alphanumeric keys, allowing
us to build a full unprivileged cache-based keylogger using Flush+Reload
that leaks all keystrokes from Chromium-based applications involving
password input fields, e.g., Chrome on banking websites, popular mes-
sengers including Signal, Threema, Discord, and password manager apps
like passky. Based on our findings, we conclude that any app using the
Chromium framework should be considered affected [23]. In addition, we
demonstrate that where full keylogging is not possible, LBTA still finds
enough leakage for inter-keystroke timing attacks [20, 32, 50, 61, 79], e.g.,
on Firefox and LibreOffice Writer.

We confirm that the Linux preadv2 syscall can be used instead of the now
mitigated mincore syscall [30] for page cache attacks [37] albeit with a
lower temporal resolution of about 2 seconds. Since system-level defenses
like ASLR have no effect on our attack, we provide a systematic discussion
of the possible mitigation vectors specific to LBTA.

Contributions. The main contributions of this work are:

1. We introduce a new dimension, side-channel granularity, into cache
template attacks and use it to speed up the templating by three orders
of magnitude.

2. We show that the leakage discovered by LBTA can be exploited in
hardware (i.e., Flush+Reload) and software attacks (i.e., via the page
cache).

3. We discover first-come-first-serve data placement and data deduplica-
tion generate amplify and introduce side-channel leakage, invisible on
the source level.

4. We present inter-keystroke timing and, depending on the target, full
keylogging attacks, e.g., Chrome, Signal, and the passky password
manager.

Responsible Disclosure. We responsibly disclosed our findings to the
Chromium team. The underlying issue is tracked under CVE-2022-2612
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(6.5, medium severity) and was patched in the M104 release in August
2022.

Outline. In Section 10.2, we provide the background. In Section 10.3, we
explain the LBTA building blocks. In Section 10.4, we describe first-come-
first-serve data placement and data deduplication. In Section 10.5, we
evaluate LBTA on different targets. In Section 10.6, we discuss mitigations,
and we conclude in Section 10.7.

10.2. Background

In this section, we provide background on hard- and software cache attacks,
side-channel discovery, and compiler- and linker-introduced side channels.

Shared Memory Operating systems (OSs) apply various optimizations
to reduce the system’s general memory footprint. One such optimization
is shared memory, where the OS actively tries to remove duplicate data
mappings. An example would be shared libraries, such as the glibc, used
in many programs, and thus, can be shared between processes. Moreover,
with the mmap respectively LoadLibrary functions, a user program can
request shared memory from the OS by mapping the library as read-

only memory. Another optimization to reduce the memory footprint
commonly used for virtual machines is memory deduplication on a page-
wise level. The OS deduplicates pages with identical content and maps
the deduplicated page in a copy-on-write semantic.

Deduplication The concept of deduplication is generic and can be applied
in the context of various memory systems to save memory. For storage
systems, one example is cloud storage systems that deduplicate files to
minimize the amount of storage required [34, 38]. For main memory, there
are multiple mechanisms: Copy-on-write avoids duplicating memory during
process creation, the OS’s page cache [30] avoids duplicating memory pages
from the disk, and the OS also avoid duplicating the zero page when zeroed
memory is requested. However, the most prominent example is data-based
page deduplication [63]. With data-based page deduplication, the OS
or hypervisor scans the main memory page-wise and identifies identical
pages, e.g., using hashes or byte-wise data comparison, deduplicating
them. In all above types of deduplication, attempting to modify the
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deduplicated memory triggers a ‘copy-on-write’ operation which is known
to introduce side-channel leakage, e.g., for file deduplication [2, 34], page
deduplication [63], from JavaScript [17, 29] and even remotely [58].

While all above types of deduplication target memory, there is also dedu-
plication in other contexts. In this paper, we focus on a different type of
deduplication that has little to do with the above or memory systems in
general. We instead focus on deduplication during compilation and linking.
The goal of deduplication here is similar though, i.e., reducing memory
usage, and improving runtime performance due to reduced memory or
cache utilization. However, the security implications of deduplication
during compilation and linking are unknown.

Cache Attacks Caches introduce exploitable timing differences between
cached and uncached data. While the first cache attacks targeted cryp-
tographic primitives [4, 39], more recent ones target secure enclaves [6,
19, 27, 44], monitor user interaction and keystrokes [41, 56, 69], and
build stealthy and fast covert channels [42, 53, 76]. The Flush+Reload
attack technique requires shared memory with the victim, e.g., shared
libraries [77]. However, as Flush+Reload works on the attacker’s own
addresses pointing to the same physical shared memory, there is no need
to know the victim’s ASLR offsets, as file offsets are used instead.

Cache attacks were also demonstrated from JavaScript to spy on keystrokes
and break memory randomization [28, 41, 46]. Most cache attacks focus
on hardware caches with a 64 B cache line granularity. Cache attacks
on the TLB instead have a spatial granularity of 4 kB, 2 MB, 1 GB, or
512 GB [31, 66].

In particular, for SGX, so-called controlled channels have been demon-
strated as powerful attack primitives [44, 64, 75] with high spatial and
temporal resolution, as well as a very high accuracy. Controlled channels
are side channels running with elevated privileges, e.g., kernel privileges,
with a typical attack target being secure enclaves that are protected
against regular kernel access.

There are also software caches, e.g., the page cache in Linux and Windows.
Both Linux and Windows also offer functions to verify whether a specific
virtual address is resident in memory or not, namely mincore and Query-

WorkingSetEx respectively. Gruss et al. [30] demonstrated cache attacks
on the page cache by either using these functions or by measuring timing
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differences. Despite hardening attempts on Linux and Windows, the Linux
preadv2 system call can still be used to mount cache attacks [37] in the
same way as with the mincore syscall: Using the RWF NOWAIT flag, an
attacker can observe whether a page is resident in the page cache or not,
yielding the same side-channel information as mincore. The results of the
preadv2 templating attacks can be found in Section 10.5.

Automated Discovery of Side Channel Attacks Templating attacks
have been first shown and mentioned on cryptographic primitives running
on physical devices [13, 43, 49]. Brumley and Haka [9] first described tem-
plating attacks on caches. Doychev et al. [22] presented a static analyzer
that detects cache side-channel leakage in applications. Gruss et al. [32]
showed that the usage of certain cache lines can be observed to mount
powerful non-cryptographic attacks, namely on keystrokes. Lipp et al. [41]
showed cache attacks and cache template attacks on ARM. Van Cleem-
put et al. [65] proposed using information gathered in the templating
phase to detect and mitigate side channels. Wang used symbolic execution
and constraint solvers to speed up cache templating of cryptographic soft-
ware [70]. Schwarz et al. [54] demonstrated template attacks on JavaScript
to enable host fingerprinting in browsers. Weiser et al. [72] and Wichel-
mann et al. [73] showed that Intel PIN tools can be used to automatically
detect secret-dependent behavior in applications, especially in a crypto-
graphic context. Wang et al. [69] presented a similar automated approach
to detect keystrokes in graphics libraries. Carre et al. [10] mounted an
automated approach for cache attacks driven by machine learning. With
that approach, they were able to attack the secp256k11 OpenSSL ECDSA
implementation and extract 256 bits of the secret key. Brotzmann et al.
[8] presented a symbolic execution framework to detect secret-dependent
operations in cryptographic algorithms and database queries. Li et al.
[40] demonstrated a neural network to perform power analysis attacks
automatically. Yuan et al. [78] demonstrated that manifold learning can
be used to detect and locate side-channel leakage in media software.

Compiler-introduced Side Channels While developers typically focus
on the source code level and care is taken to not introduce side channels
there, the compiler translates the source code to a binary, essentially a
different language. However, this step can introduce program behavior
that is not visible on the source level and introduces or amplifies side-
channel leakage. Page [47] demonstrated that dynamic compilation in
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Figure 10.1.: Overview of the LBTA

Java leads to power side-channel leakage in a side-channel-secured library.
Simon et al. [60] showed that mainstream C compilers optimizations can
break cryptographically secure code by introducing timing side channels.
Brennan et al. [7] showed that timing side channels can be introduced by
exploiting JIT compilation.

Due to this significant influence of compilers on side-channel leakage in
binaries, they are also frequently used for new mitigation proposals against
side-channel leakage [5, 11, 16, 18, 26, 48].

10.3. Layered Binary Templating Attack

For large binaries, like the Chrome browser with multiple shared libraries
(220 MB), templating with fine granularity like prior work [32, 41, 69],
e.g., a cache line, becomes impractical. LBTA takes advantage of coarser
granularity channels, which usually are considered a disadvantage for the
attacker. In this section, we present the high-level view on LBTA and show
how LBTA reduces the templating runtime by three orders of magnitude
(i.e., 1848x).
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10.3.1. Threat Model

The templating (or profiling) runs on a fully attacker-controlled system
with any privileges the attacker wants to use to facilitate the templating.
This system is assumed to have the same side channels as the victim system,
such as the page cache and CPU cache, and the same software versions as
on the victim system were deployed, e.g., from package repositories. For
this reason, the typical template attack threat model only restricts the
attacker in the exploitation phase [32], which we follow in this work.

In the exploitation phase, the attacker runs an unprivileged attack
program on the victim’s system, possibly under a separate user account.
Hence, we assume the victim application is started independently by
the victim user, and cannot be started, stopped, or debugged by the
attacker. This also excludes “preloading”, which, e.g., on Wayland (the
default Ubuntu display server), would allow monitoring all inputs to the
application [3]. For non-Wayland systems, we assume that the attacker
cannot use other keylogging techniques (e.g., on X11 [1]), or Windows (e.g.,
using the getasynckeystate API call [68]), e.g., due to system hardening
or enforced security policies. Some of the applications we attack provide
auto-fill features or are password managers. However, since we focus on the
keylogging scenario, we assume that the victim user enters the password
in these applications manually, i.e., the user does not use an auto-filler or
another password manager to unlock the password manager. Furthermore,
many websites set the autocomplete="off" option for sensitive input
fields, suppressing the in-built auto-fill and password management features.

10.3.2. High-Level Overview of the Templating Phase

Figure 10.1 illustrates the steps of LBTA. First, the attacker templates the
library and creates templates of the cache usage for different keystrokes.
After the templating phase, the attacker monitors the cache usage to infer
inter-keystroke timings and, depending on the target, even distinguish key
values.

10.3.3. Templating with Different Spatial Granularity

A novel aspect of LBTA is to utilize the spatial granularity of different
side channels, forming a practical and generic multi-layered approach.



280 Chapter 10. Layered Binary Templating

64 B Granularity. Previous cache template attacks [32] used cache-line
granularity (64 B). One disadvantage of this approach is the runtime of the
templating phase. When templating a single cache line with Flush+Reload,
we observe an average runtime of 490 cycles (n = 1000000, σx = 20.35%).
On a 4.0 GHz CPU, this would take 122.5 ns. The Chrome binary has a
file size of about 210 MB leading to 2 949 120 addresses to template with
Flush+Reload. This leads to a runtime of 0.36 s for templating every
cache line once. However, Gruss et al. [32] describe that multiple rounds
of Flush+Reload are required to get reliable cache templating results.
Running an Intel 6700k CPU at 4.0 GHz with a Ubuntu 20.04, templating
1 MB of the Chrome browser (version 100.0.4896.60) with the provided
implementation of Gruss et al. [32], we observe a runtime of 817.652 s for
1 MB and a total runtime of 1.98 days for the full binary, including shared
libraries, of 210 MB. Moreover, this templating tool only reports whether
a certain address was cached or not and does not match the cache hits with
the entered keystrokes. To template, for instance, the 57 different common
keys sequentially with the method by Gruss et al. [32], we would need
an impractical total runtime of 113.17 days to obtain useful templates.
We conclude that such an approach is not feasible for browser developers
as the code base changes frequently, and releases sometimes occur on a
monthly basis [14].

4 kB Granularity. Page cache attacks exploit the OS page cache, which
works at a coarser granularity of 4 kB [30]. Page cache attacks have
the advantage of working independent of the underlying hardware. To
identify the exact memory locations causing leakage, they also resorted to
templating. However, they did not combine this information with timing
differences from hardware caches.

Our intuitive idea here is to combine the 4 kB-granularity side channel with
the more fine-grained side channel into a two-layered approach. Hence,
we do not template all cache lines on a 64 B granularity but instead,
filter memory locations on a 4 kB granularity. Instead of 2 949 120 memory
locations, we then only monitor 46 080 memory locations for the Chrome
example, i.e., a templating runtime speedup of at least 64. In addition,
the templating phase on the 4 kB granularity level implicitly identifies
locations exploitable via the page cache.

The templating phase runs on the attacker’s own machine (cf. Sec-
tion 10.3.1). Hence, we can use the page cache side channel or privileged
channels, e.g., controlled-channel attacks [75] via page-table bits [64] dur-
ing the templating, i.e., we use the kernel’s idle bit for tracking. For the
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full Chrome binary (cf. Section 10.3.5), this results in a runtime of only
1.47 hours for all 57 keystrokes.

2MB Granularity. Each page-table layer provides referenced bits that
are set by the hardware when a location in this region is accessed. The
2 MB-granularity side channel is also exposed via various side channels [31,
66]. We observe the activity on 2 MB pages via the PMD paging structure
and the referenced bit. We use PTEditor [55] to check and clear the
referenced bit of the PMD, i.e., a 2 MB page, with a runtime of 661.965 ns
(n = 1000000, σx = 0.049%) per check. Hence, to template the 57 different
common keys in Chrome with 20 repetitions per key, we estimate the total
runtime of templating to be about 0.15 seconds.

10.3.4. Beyond Huge Pages

LBTA extends to arbitrarily coarser granularity channels.

1GB, 512GB and 256 TB Granularity. For the 1 GB granularity level
and beyond, we experimentally validated that we can again use controlled-
channel attacks [64, 75], using the corresponding higher page-table layers.
Following a similar approach as for the previous levels, we use PTEditor
to template and clear the referenced bit for the single offset in a 1 GB
(respectively 512 GB or 256 TB) range. The runtime for checking and
clearing the referenced bit on these layers is the same as for the PMD
(661.965 ns (n = 1000000, σx = 0.049%)). We emphasize that scanning
layers that exceed the binary size, e.g., the 1 GB layer for a 180 MB binary,
provides no additional information and does not reduce the search space,
as the search will always proceed to the next smaller layer for the entire
memory range then. Therefore, in the evaluation, we skip all layers that
exceed the binary size. Still, these layers of LBTA may become relevant
in the future with constantly growing binaries and libraries.

1

10.3.5. Templating Phase Implementation

The high-level idea is that the templater tracks page usage and actively
filters pages not related to keystrokes to reduce the search space of pages
to template and, as a result, reduce the overall runtime of the templating.
We implement our templater in Python and provide the code in our Github

1
The Chrome binary had 100MB in 2017 and 180MB in 2022, an increase of 80%.
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repository
1
. The templater takes as input the set of different keys, the PID

or process names that should be monitored, and the number of samples
per key.

Algorithm 1 summarizes the steps of the templating. First, the templater
runs a warmup phase, where all keystrokes to template are entered once
to load all related memory locations into RAM. Then the templater
collects all the memory mapping information from all files from the target
processes where activity has been found. These memory mappings include
all shared libraries. The templater generates random key sequences based
on the set of keys to template. For each key in the sequence, the templater
iterates over all the memory locations on the current granularity level,
and resets the access information, i.e., resets the referenced or idle bit,
or flushes the cache line depending on the side channel used. Based on
the number of samples, the templater computes the hit ratio for each
location. Subsequently, the templater repeats this step for all memory
locations above a specific hit ratio with the next lower spatial granularity.
With this search strategy, the templater continues down to the lowest
level, where only regions are templated that showed activity on coarser
granularity. On the lowest level, the templater determines a hit ratio for
each single cache line.

Algorithm 1: LBTA Templating Algorithm

Input: Set of keys K, target PIDs Pn, number of samples N
Output: hit ratio matrix of all memory mappings H
1: Enter all keys in K once // Warmup
2: Collect all valid memory mappings of Pn

(possibly from previous layer)
3: for i = 0; i < N ; i + + do
4: for each k ∈ K do
5: Reset memory mappings (reset referenced/idle bits or flush)
6: Enter key k
7: Check state for all present memory mappings (via interface or

timing)
8: Compute hit ratios for k and update Hk

9: end for
10: end for
11: return H, and repeat algorithm for next layer

1
https://github.com/IAIK/LayeredBinaryTemplating

https://github.com/IAIK/LayeredBinaryTemplating


10.3. Layered Binary Templating Attack 283

Linux. On the upper layers, we start by obtaining the memory map-
pings for the target process. On Linux, we read these mappings from
procfs (with root privileges in line with the threat model). We group the
memory locations then according to the most coarse granularity we use in
our templating. By using the referenced-bit side channel according to
Algorithm 1, we narrow down the set of memory locations for the next
layer.

Windows. On Windows, we obtain a list of memory mappings using
the EnumProcessModules PSAPI call, which lists all loaded libraries and
executables, and GetModuleInformation for their actual sizes. Subse-
quently, we again use the referenced-bit channel to narrow down the set
of memory locations using Algorithm 1. Subsequently, we continue with
the next layer.

4 kB Page Granularity

While for the upper layers, we read referenced bits using PTEditor [55],
we use a more optimized approach for the page granularity.

Linux. Our page usage tracker iterates over active mappings, reads the
idle bit for the corresponding physical page from /sys/kernel/mm/page -

idle/bitmap and checks if the page was accessed. We start by resetting the
bit so that the page usage tracker is ready. We use the Python3 keyboard

library to inject keystrokes into an input field. After the templater
performs the sequence of keystrokes, we check all pages that are still in
the candidate list for activity. A 1 at the page offset in the bitmap means
the page was not accessed. Conversely, if we observe a 0 at the page offset,
we reset the page offset and add it to the set of correlated pages to track
on the next layer. This approach is fully hardware-agnostic, implemented
in software in the Linux kernel. After each iteration, we reset the state
again by marking the pages as idle again and repeat the measurements.

In case of a sequential read access pattern, the Linux kernel speculatively
prefetches further pages of the same file after a new page was added
to page cache. This optimization is called readahead [33]. On Ubuntu
20.04 (kernel 5.4.0), the default read-ahead size is 128 kB and can be
found in the sysfs (/sys/block/<block device>/bdi/read ahead kb).
For file-mappings the kernel performs a different optimization called
read-around.

1
There, the kernel prefetches pages surrounded by the

1
https://elixir.bootlin.com/linux/v5.4/source/mm/filemap.c#L2437
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page causing the pagefault e.g., 16 pages before the page causing the
pagefault and 15 pages after. To reduce triggering read-ahead prefetching
for sequential reads, we use the madvise system call with the MADV RANDOM

flag to indicate a random read order.

Overlapping event (i.e., keystroke) groups for the current candidate page
and pages that might trigger the read-ahead of the current candidate
page could cause false positives in the Linux case. In addition, if the
number of read-ahead suppress pages is too small, false positives can
occur. Our classifier tries to reduce the number of false positives by
checking out the read-ahead/read-around windows and systematically
rule out other keystrokes. Based on the results of the templater, the
classifier actively accesses surrounding pages from the target page to
suppress the read-ahead/read-around optimization. Note that the read-
ahead and read-around windows might overlap for some keys. If the keys
to template are not on the same 4 kB-page, we can still distinguish two
keys by checking the first and last surrounded pages being accessed. The
templater actively creates warnings in the templating phase in case the
keys are still indistinguishable.

Windows. Windows uses a different page replacement strategy with
working sets [52]. For the page usage tracker on Windows, we use the
PSAPI call QueryWorkingSetEx and monitor the Shared, ShareCount
and Valid flags. If the page is marked as valid and shared and the
share count is larger than 1, we mark the page as used. For the reset,
EmptyWorkingSet is used to remove the pages from all workings sets. This
PSAPI call is only available for unprotected processes, which is no issue
during the templating phase (cf. Section 10.3.1).

On Windows, we observed no prefetching optimization within working sets,
i.e., read-ahead does not affect hit ratio or spatial accuracy. Alternatively,
the templating could also be performed via controlled side channels [25,
59, 75], tracing tools such as Intel PIN, machine learning [10, 69] or
architecturally monitoring the accesses of pages using PTEditor [55].

Classifier. On the 4 kB level, we collect the page-hit ratios for all events
(i.e., keys) and pages, showing the link between event and observable page
hit. To distinguish ‘no activity’ from ‘activity’, we also template a dummy
idle event [32] to measure which hit ratios are observed as a baseline. This
idle event will not be linked to any page hit but rather should represent
unrelated system activity the templater might pick up while profiling
events. Our classifier links events or groups of events with single page hits
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to keep the number of observed pages as low as possible. This is a trade-off
between search time and completeness of the search that can be chosen
differently for any LBTA on any target application. Furthermore, a more
sophisticated attack could increase detection accuracy from monitoring
multiple pages or cache lines for each event. However, we decided to use
the search-time-optimized path, as side-channel attacks typically cannot
observe an arbitrary amount of memory addresses anyway, i.e., we focus
on a more practical set of leaking addresses.

The algorithm to find a suitable page hit for an event e works as follows:

1. We normalize page-hit ratio vector for event e by average page-hit
ratio from other events (baseline activity). The resulting vector is the
correlation strength between each page and the event e.

2. We select the page with the highest correlation strength as a candidate.

3. If the candidate is not above the location-specific baseline activity,
our algorithm merges events (e.g., going from single keys to key groups)
until it is. We continue with the resulting event group E = {e1, . . . , eM}
in step 1.

4. Once a candidate is found that is above the location-specific baseline
activity, the algorithm returns this page to subsequent templating
layers.

While running, the classifier collects information on potential read-around
prefetching pages to filter them out. After successful classification, the
attacker has a mapping of pages to events (i.e., key) and groups of events
(i.e., groups of keys).

10.4. Compiler- and Linker-introduced Spatial
Distance

Before we evaluate LBTA, we present one significant leakage-facilitating
effect that we discovered while applying LBTA on a variety of targets.
This effect is particularly critical as it originates in compiler optimizations
in LLVM/clang that are enabled by default and the available compiler flags
that can control this behavior come with serious limitations. Compiler
optimizations aim for a minimal program runtime, small memory footprint,
and small binary size. Moreover, linker optimizations try to further
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optimize the binary in the linking stage. We primarily found two effects
to facilitate cache side-channel leakage: One is the other is first-come-
first-serve data placement in readonly sections, the other one is data
deduplication during compilation and linking. While memory
deduplication at runtime has been explored as a security risk already (cf.
Section 10.2), data deduplication (e.g., of strings) during compilation is
not widely known and its security implications are entirely unexplored.
The security of constant-time implementations has been analyzed for
side channels being introduced by compilers [7, 47, 60, 65]. In this
section, we show that deduplication in combination with first-come-first-
serve population during compilation (cf. Section 10.4.2) and linking (cf.
Section 10.4.3) can amplify this effect by increasing the chance that secret-
dependently accessed victim data is placed in an attacker-facilitating way.
Deduplication can also be performed at the linking stage. The spatial
distance between secret-dependent accesses can be introduce by both
compiler and linker optimizations. We present two scenarios that we also
found in widely used real-world applications, where the placement of read-
only data, especially strings, amplifies side-channel leakage dramatically.
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Figure 10.2.: First-come-first-serve population of the .rodata section in the
binary.
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1 struct MapEntry { const char* key, value; };

2 #define LANGUAGE_CODE(key,value) { key, value }

3 #define MAP_DECL constexpr MapEntry mappings[] = MAP_DECL {

4 LANGUAGE_CODE("KeyA","DataA"), LANGUAGE_CODE("KeyB","DataB")

5 };

6 #undef MAP_DECL

7 void string_funcA(vector<string>& v) {

8 string local_ro_string = "DataB";

9 v.push_back(local_ro_string);

10 string padding_string = "<64-byte-string>";

11 v.push_back(padding_string);

12 }

13 void string_funcB(vector<string>& v) {

14 MapEntry k1 = mappings[0]; //KeyA

15 v.push_back(k1.value);

16 MapEntry k2 = mappings[1]; //KeyB

17 v.push_back(k1.value);

18 }

Listing 10.1: Strings are deduplicated in the binary and could lead to
spatial distance between readonly-strings in the same array in
combination with first-come-first-serve data placement.

10.4.1. First-Come-First-Serve Data Placement

Lookup tables are frequently used to speed-up memory accesses and store
constant data like locality strings. For the developer, it is not transparent
how constants are stored in the compiled binary. Thus, even if the code
seems to be placed in a cache line, i.e., 64 B granularity, the compiler
might reorder strings and add more spatial granularity between data. One
optimization to reduce the binary size is to only populate the read-only
data section if the compiler observes that only certain indices of a lookup
table are accessed. If the developer uses a macro to dynamically populate
a lookup table, e.g., with key mappings or similar, compilers do not insert
all elements into the read-only section of the binary to reduce the binary
size. Instead, the compilers use a first-come-first-serve data placement
strategy to place the data in the read-only section. Figure 10.2 illustrates
how data can be placed in .rodata section caused by this strategy.
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10.4.2. Data Deduplication during Compilation
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Figure 10.3.: String deduplication in the compiler and linker causing spatial
distance in .rodata section of the binary.

Another optimization facilitating cache attacks, also in combination with
the first-come-first-serve data placement we just discussed, is data dedu-
plication during compilation. Deduplicating strings can reduce the binary
size significantly but also the memory resident size when running the
program, as strings do not have to be kept in memory multiple times.
Figure 10.3a demonstrates how string deduplication can introduce spa-
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tial distance in sections of the binary, for instance, the .rodata section.
C/C++ compilers deduplicate strings that occur more than once in the
source code. Listing 10.1 illustrates a situation where string deduplication
can be performed. Both the lookup table mappings and the function
string funcA contain the string DataA. The compiler traverses over the
functions, and DataB is first inserted into the .rodata section. Again,
data processed by the compiler (padding) could cause spatial distance be-
tween DataA and DataB. Before the compiler inserts DataB (mappings[1]
in string funcB), the compiler checks for duplicates and only points to
the existing occurrence of DataB in the .rodata for all future usages. We
evaluate Listing 10.1 for GCC and Clang. For Clang, we observe again
for all optimizations levels the ordering DataA.<64-byte-string>.DataB

in the .rodata section. For GCC, we observe the same result that for
optimization levels O0/O1, both values are populated next to each other
in the .rodata (DataA.DataB). For the other levels, the small strings are
encoded as immediate values.

10.4.3. Deduplication in the linking step.

As we showed, string deduplication can cause spatial distance between
strings and enable side-channel attacks in the compile step. For large
software projects such as the Chromium project, it is important to merge
strings also across object files. Since 2017, lld uses multiple hash tables to
compensate some of the overhead caused by this link-time optimization
by increasing concurrency using hash tables that can be accessed in
parallel [51]. However, as there are multiple tables, inserting merged
strings can cause a different layout for strings in the .rodata section than
in the final linked binary. Figure 10.3b illustrates how the concurrent
merging can lead to spatial distance in the final binary. With the highest
optimization level of lld linker, i.e., -O2 [45], the linker merges duplicate
substrings contained in larger strings. The smaller substring will be
removed, and the tail of the larger string is used to index the substring.
The security implications of string deduplication need to be considered in
software projects since large spatial distance between secret dependent
values, such as different key inputs, can lead to leakage of all user input,
as we show in Section 10.5.
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10.5. Evaluation and Exploitation Phase

In this section, we evaluate our templater on large binaries, such as
browsers, that have not been targeted with templating attacks so far.
We evaluate how well the templates work in the exploitation phase in
terms of the attack F-Score. For the exploitation phase, we, the attacker,
runs without privileges on a default configured system, with background
activity (running e.g., browser, mail client, chat clients, music and video
streaming, virus scanning, system updates running, etc.) leading to a
realistic amount of system activity and noise. Overall we found that Flush+
Reload is extremely noise-resilient, in line with previous works [32, 77]. We
also focus on widespread Chromium-based products and demonstrate that
they are susceptible to LBTA. We analyze the root cause for the leakage
and show that it is caused by a compiler optimization. Table 10.1 lists all
the evaluated applications, including the Chromium-based browsers and
applications, Firefox, and LibreOffice Writer.

Templating of HTML form input fields Chrome. We first run our
templating tool while generating keystrokes. We run our templater on
an Intel i7-6700K with a fixed frequency of 4 GHz running Ubuntu 20.04
(kernel 5.4.0-40) on Chrome version 100.0.4896.60. To get more accurate
results during the templating phase, we recommend dropping the active
caches before executing the templater via procfs (/proc/sys/vm/drop -

caches). Moreover, we blacklist file mappings from the /usr/share/fonts/
as they lead to inconsistent results during the evaluation phase. Our tem-
plater traces 57 different key codes of a common US EN keyboard in HTML
password fields over the total size of memory mappings in Chrome of
209.81 MB (including the main binary and shared libraries). For each
key code, we sample 20 times. On average, we observe a runtime of
1.47 hours (n = 10, σx = 0.33%) for 57 key codes, including the time for
key classification. For a single key code, the runtime is 92 seconds. For
comparison, the cache template attack implementation by Gruss et al.
[32] takes 113.17 days to template the same files. Thus, with 1.47 hours
LBTA speeds up the templating by a factor of 1848.

Leakage Source in Chrome.
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Figure 10.4.: Key code strings in the .rodata section introduce cache leakage.

As we discovered the page offsets related to the different keystrokes, we
want to find the exact cache line causing the cache leakage. We extend
our monitor with Flush+Reload to determine the cache line within the
page. To speed up the templating time and obtain precise information
on which cache line has the highest correlation, we disable most of the
Intel prefetchers by writing the value 0xf to MSR 0x1a4 [67], as otherwise
multiple cache lines would have the highest correlation. We map the
Chrome binary as shared memory and perform Flush+Reload on all
mapped cache lines to determine the corresponding cache lines for each
key. We analyze the Chrome binary and lookup the offsets causing the
leakage for a specific keystroke. Each cache line causing the leakage of
a certain character contains a string for the key event, e.g., “KeyA”.
We observe that all offsets lie in the read-only data (.rodata section of
the binary. The leakage source are key-dependent accesses to the key
code strings in the dom code table,

1
e.g., DOM CODE(0x070004, 0x001e,

0x0026, 0x001e, 0x0000, "KeyA", US A);. Figure 10.4 illustrates the
leakage source for a user typing in a certain character and the corresponding
DOM CODE for the UI event. To verify if the leakage is related to string
deduplication, we download the Chromium source, disable the string
deduplication -fno-merge-all-constants and rebuild the Chromium
browser. We still observe, that the single keystrokes are spread over
multiple pages in the .rodata section, which can still be exploited by

1
https://source.chromium.org/chromium/chromium/src/+/main:

ui/events/keycodes/dom/dom_code_data.inc

https://source.chromium.org/chromium/chromium/src/+/main:ui/events/keycodes/dom/dom_code_data.inc
https://source.chromium.org/chromium/chromium/src/+/main:ui/events/keycodes/dom/dom_code_data.inc
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the attacker despite the overheads in binary size and execution runtime
caused by disabling the optimization. Hence, the compiler flag to disable
string deduplication does not fully close the side channel. As a next step,
we analyze the compiled object files after the build process. We observe
that the created object file keycode converter.o still contains all the
key event strings adjacent to each other in the binary. This indicates
that the linker introduces the spatial distance between key event strings.
We perform a binary search on older Chrome binaries from a public
Github repository containing archived Chrome Debian packages [71] to
see when the spatial distance for key event strings was introduced. As a
result, we observe that between version 63 and 64 of Chrome (year 2017),
the single key event string was placed in the .rodata at different 4 kB
pages. According to [51], the linker optimizations have been constantly
improved since 2017. As discussed in Section 10.4, the parallelism in
string deduplication can also cause spatial distance between key events.
Disabling the string merging optimization is currently only possible by
disabling all optimizations using optimization level O0 for the linking with
-Wl,-O0. This removes the spatial distance between the key event strings
but comes with a substantial overhead as optimizations are disabled. At
any higher optimization level, e.g., -Wl,-O1, the spatial distance reappears
as strings are again deduplicated. This confirms that one of the effects
we exploit is introduced by the linker. In comparison to state-of-the-art
keyloggers on Linux like xkbcat [1], our keylogger does not rely on running
as the same user within the same X-session. We verify this by running our
keylogger as a different user and can still recover the keys from Chrome.

Keylogging in Chrome with Flush+Reload.

a b c d e f g h i j k l mn o p q r s t u vw x y z 0 1 2 3 4 5 6 7 8 9
0

0.5

1

Key Event
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1
-S
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re

Flush+Reload Page Cache

Figure 10.5.: F-Score per key using Flush+Reload and page cache attacks for
all alphanumeric characters in Chrome.
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Figure 10.6.: Cache-hit ratio using Flush+Reload for all digits letters in
Chrome.

We run our monitor in three experiments for 180 seconds with all lower-
case alphanumeric characters and observe cache activity for every single
keystroke. The first experiment runs with fast user input with 1 ms be-
tween each keystroke. We count cache hits following a keystroke as true
positives if they occur on the cache line that is correct according to our
template and as false positive otherwise. To obtain the number of false
positives, we run the monitor in a second experiment without performing
any keystrokes in the input field, i.e., idling. To complete our data on false
negatives and true positives, we run the monitor in a third experiment
while performing user input with 1 s between each keystroke. Over the
total 540 second measurement time frame, we observed no false negatives.
Figure 10.7 (Appendix) shows the cache-hit ratio for the cache lines de-
tecting lowercase letters in Chrome. Figure 10.6 shows the cache-hit ratio
for the cache lines detecting numeric digits in Chrome. As shown from
Figure 10.6, the different digits can be highly-accurately classified. As can
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be seen, the cache line accessed for digit 9 also contains other data that is
constantly accessed by code handling other events in Chrome. Therefore,
the cache line is constantly accessed also in an idle state and, in practice,
cannot be used to spy on digit 9. From all the 36 alphanumeric keys,
this is the only character where code or data is co-located with other
(unrelated) frequently accessed code or data. The F-Score is the harmonic
mean of precision and recall. Section 10.5 illustrates the F-Score for all
alphanumeric characters. We also observed that a single keystroke causes
up to three cache hits. These cache hits could be related to the window
events key up, key pressed and key down. To avoid printing the same
character multiple times, a cache miss counter between the keystrokes can
be used [32]. Note that multiple cache lines can be considered to further
increase the accuracy of the keylogger [10, 41, 69].

Keylogging with the page cache. To demonstrate that the Chrome
leakage is not specific to a certain CPU, we run our keylogger on Chrome
version 99.0.4844.84. Our test device runs Ubuntu 20.04 (kernel 5.18.0-
051800-generic), equipped with an AMD Ryzen 5 2600X CPU, 16 GB of
RAM, and a Samsung 970 EVO NVME SSD. We circumvent the read-
around and read-ahead optimization, as explained in Section 10.3.5. The
keylogger uses the keystroke template for the main Chrome binary and
monitors the page cache utilization for the corresponding pages using the
preadv2 syscall. It then reports the detected activity as keystrokes and
subsequently evicts the page cache. While the page cache attack using the
mincore syscall was able to observe keystrokes on a fine temporal gran-
ularity, we observe that using preadv2 comes with practical limitations.
In particular, with large eviction set sizes, guessed by the attacker, we
conclude that only very slow keyboard interaction with gaps of 2 s and
more can be observed. However, our evaluation of the page-cache side
channel is generic and would also apply to scenario where the mincore

syscall is available, which allowed fast and non-destructive continuous
probing.

Based on the page cache accesses, we compute the page-hit ratio for
Chrome over the page cache. Figure 10.7 (Appendix) shows the page-hit
ratio for the page cache detecting alphanumeric letters in Chrome. For
the Chrome version, we observe that the characters b,m,9,h,y,x are
grouped and cannot be uniquely distinguished. We again perform the
experiment in three phases to determine true positive, false positive, and
false negative rate by simulating fast, slow, and no user input. Section 10.5
shows the F-Score for all alphanumeric characters running the page cache
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attack. While most characters have very high F-Scores, the character
group b,m,9,h,y,x has a lower F-Score due to false positives when other
keys are pressed. Also, same as in the Flush+Reload attack, the character
9 suffers from a high number of false positives, negatively impacting the
F-Score.

Electron. As we observed the leakage of keystrokes within the Chrome
binary, we further analyzed Chromium-based applications like the Elec-
tron framework. As Chromium-based applications largely use the same
keystroke handling code, we can directly scan the .rodata section for the
keystroke offsets. We evaluate the templates on Chromium, Threema,
Passky, VS-Code, Mattermost, Discord and observe similar leakage rates
to Chrome with F-Scores of at least 85 %. Table 10.1 contains the F-Scores
for the different applications. Based on these clear results, we deduce
that, in principle, all Electron applications are susceptible to LBTA and
cache-based keylogging attacks.

Chromium Embedded Framework. The Chromium Embedded
Framework (CEF) is widely used and another interesting target for LBTA.
While Electron directly uses the Chromium API, CEF tries to hide the
details of the Chromium API [24]. CEF is actively run on more than 100
million devices [12]. We target Spotify, and the Brackets editor application,
which are both based on CEF. To attack a CEF application, an attacker
needs to read out the .rodata section from the shared library libcef.so.
We run our monitor again with Flush+Reload and observe an F-Score of
96 % over the lowercase alphanumeric characters. For Brackets (1.5.0), we
observe, that the libcef.so was built with an older linker version as the
different key-event related strings for the lowercase alphanumeric charac-
ters are co-located in three different cache lines. Therefore, we consider
all CEF applications to be susceptible to cache templating in principle.
We observe an F-Score of 94 % for detecting key events. However, we also
observe that hardware prefetching practically thwarts the distinction of
different blocks in this scenario more than in the other attack scenarios,
leaving only inter-keystroke timing attacks as an option for the attack
phase.

Firefox. Firefox uses a different build system where optimizations such
as data deduplication may still apply but with slightly different behavior
than with LLVM/clang. Therefore, we templated Firefox and found cache
activity for each keystroke in the libxul.so library (offset: 0x332d000).
However, we did not find leakage to distinguish keys. However, an attacker
can still determine whether a user is typing and perform an inter-keystroke
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timing attack [20, 32, 50, 61, 79] to recover the keystrokes. The accuracy
we observed for such an attack is 96 %.

LibreOffice Writer. We profile the LibreOffice Writer version 6.4.2
on our Linux setup. Our profiler shows that the library libQt5XcbQpa-

.so.5.12.8 (offset: 0x51000) offset reveals cache activity on all letters but
no digits. The library libswlo.so (0x53e000) leaks keystrokes reliably
with an F-Score of 1.

Chrome on Windows. Chrome on Windows is built with a different
compiler and linker. Therefore, we tested Chrome versions 103.0.5060.53
and 114 on an Intel i5-4300U notebook running Windows 10 (1803,
17134.1726). We use the LoadLibrary function create read-only shared
mappings with victim applications. We observe that in the chrome.dll

(offset: 0xa4ee000) the different key values are co-located instead of having
a spatial distance of multiple 4 kB pages. With our Flush+Reload cache
monitor we are able to observe all key presses and distinguish presses in
the key groups A-F, G-S, T-Z and 0-4, and 5-9, with an F-Score of 99 %.
However, due to prefetching we can only monitor a single key group at
a time. We also found user input leakage on many other locations, e.g.,
msctf.dll (0x45000), and imm32.dll (0x3000).

Search bar. Templating user queries in the browser would tremendously
reduce the privacy of browsers. Running the templater on the search
bar of Chrome 103.0.5060.53 revealed that the search bar uses a different
method to load the keys and there is only a single page (offset: 0x91d4000)
in Chrome with cache activity upon keystrokes. Based on our results, we
conclude that the search bar does not use the same internal structures
for key events as HTML input data. Still, the leakage we discovered
enables inter-keystroke timing attacks on keystrokes. Running the profiling
experiment with all alphanumeric, we achieve an F-Score of 99 % for
detecting key presses.

10.6. Mitigation and Discussion

Different mitigation vectors could prevent either LBTA or the underlying
leakage utilized in the exploitation phase, albeit at a significant perfor-
mance and usability cost. We identified five conditions for an attack to
succeed:
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Table 10.1.: Evaluated applications. Page cache (PC) and cache line (CL)
indicate whether precise keystroke attacks are possible on that
granularity. Inter-Keystroke Timing (IK) indicates that key events
can be detected on the application via Flush+Reload or the page
cache.

Name Category CL PC IK (key groups) Avg. F-Score (Flush+Reload)

Chrome (99.0.4844.84) Browser ✓ ✓ ✓ 94 %
Signal-Desktop (5.46.0) Private Messenger ✓ ✓ ✓ 98 %
Threema (2.4.1) Private Messenger ✓ ✓ ✓ 84 %
Passky (7.0.0) Password Manager ✓ ✓ ✓ 99 %
VS-Code (1.69.1) Editor ✓ ✓ ✓ 85 %
Chromium Browser (103.0.5060.114) Browser ✓ ✓ ✓ 99 %
Mattermost-Desktop (5.1.1) Collaboration Platform ✓ ✓ ✓ 94 %
Discord (0.0.18) Text and Voice Chat ✓ ✓ ✓ 98 %

Spotify (1.1.84.716) Audio Streaming ✓ ✓ ✓ 96 %
Brackets (1.2.1) Editor ✘ ✘ ✓ 94 %

Chrome 103.0.5060.134(Windows) Browser ✘ ✘ ✓ 99 %
Chrome 103.0.5060.53 (Search Bar) Browser ✘ ✘ ✓ 99 %
libxul.so (Firefox 102) Browser ✘ ✘ ✓ 99 %
LibreOffice Writer (6.4.2) Office Software ✘ ✘ ✓ 99 %

Golden device availability Templating attacks consist of two phases.
In the templating phase, the attacker uses a setup that is similar to the
victim system [9, 13, 32]. This is trivial for cache attacks on most desktop
and laptop processors, as they are virtually identical in terms of attacks
like Flush+Reload (i.e., the processor has cache lines and eviction or
flushing of these is possible). Software diversity [18], in principle, could
break the link between templating and exploitation, but is not widely used.
Thus, in practice, the vast majority of users runs binaries obtained from
the official repositories or websites, making it trivial to create templates
for them. Furthermore, even with software diversity, once the attacker
knows what the target byte sequences (e.g., strings) in the binary are, the
attacker can simply search for these on the victim system (without the
need for templating again) and attack the victim binary in the same way
again. Hence, we also consider software diversity no mitigation to LBTA.

Disable Compiler and Linker Optimizations For the Chromium
example, disabling the linker optimizations (deduplication and spatial
distancing) would reduce the accurate keylogging to inter-keystroke timings
for key groups in 4 different cache lines. However, this may still enable
inferring user input accurately [61]. On the negative side, removing these
optimizations typically increases binary sizes and cache utilization due to
runtime use of duplicated data. Note that this type of deduplication and
spatial distancing is introduced on the compiler and linker level, which is
completely transparent to the OS. While the OS could dynamically rewrite
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binary pages at runtime to counteract this behavior, this would introduce
huge amounts of complexity, overhead, and the potential for unhandled
corner cases. Instead, the Chromium team opted for a compiler- and linker
workaround, which triggers the string placement explicitly by placing and
initializing dummy data structures such that the current compiler and
linker versions do not spatially separate the secret data. However, this
approach is fragile as it depends on the specific behavior of the compiler.

Secret-dependent execution For cryptographic code, the state of
the art against side channels is the linearization to so-called constant-
time code, i.e., constant code and data accesses, regardless of the secrets,
albeit with a considerable performance cost [15]. For general purpose
code, always running all the code and accessing all the data is infeasible.
Different works linearized the control flow of general purpose code [5,
21, 57] and observed a prohibitively high runtime overhead for realistic
workloads. Hence, the problem of secret dependency on user input in
large applications remains an open problem.

Side-channel observability Tools like CacheAudit [22] or CaSym [8]
follow the cryptography-focused notion of constant time to consider an
application leakage-free. However, in practice, distinguishing keys may
be infeasible for an unprivileged attacker when key-dependent execution
exists but does not cross, e.g., page or cache-line boundaries, depending
on the side channel. In particular, within a page, the hardware prefetcher
is a substantial obstacle introducing spurious cache activity on the target
cache lines, foiling exploitation in practice [32]. The compiler could utilize
this effect by grouping potentially secret-dependent accesses, minimizing
the number of cache lines data structures are spread across, and placing
strings interleaved with frequently used code or data.

Noise resilience Since user input cannot be triggered and repeated by
the attacker millions of times, noise resilience is also one condition. Hence,
inducing noise, unsuitable to secure cryptographic operations, can provide
strong security guarantees for user input [56]. A low number of memory
accesses could substantially limit the presented attacks, especially if user
annotations of potentially secret data tell the compiler where to add these
accesses.

LBTA is also interesting as a defensive technique revealing leakage as part
of a continuous integration pipeline [74], revealing leakage that is not or
not to the actual extent visible to developers on the source level, but
only in the binary due to compiler and linker optimizations introducing
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these spatial distances. Moreover, languages like JavaScript, Java, PHP,
and Python also perform string deduplication (under the term ‘string
interning’) to reduce memory utilization, potentially leading to similar
effects.

We demonstrated that keystrokes in form input fields in Chrome can be
detected using cache attacks on hardware and software caches. While
Chrome is a valuable target, the dependency of many frameworks on the
Chromium project, such as CEF and Electron, leads to a significantly
higher impact as browser-based desktop applications, e.g., using the popu-
lar Electron framework [23], are susceptible to accurate keylogging with
our attack.

10.7. Conclusion

First-come-first-serve data placement and data deduplication during com-
pilation and linking facilitate side-channel leakage in compiled binaries.
We show that this effect can even induce side-channel leakage where,
without these optimizations, no secret-dependent accesses cross a 64-byte
boundary. The foundation to discover this attack was our extension to
cache template attacks, called Layered Binary Templating Attacks, LBTA.
LBTA is a scalable approach to templating that combines spatial informa-
tion from multiple side channels. Using LBTA we scan binaries compiled
with LLVM/clang, which applies first-come-first-serve data placement
and deduplication by default. Our end-to-end attack is an unprivileged
cache-based keylogger for all Chrome-based / Electron-based applications,
including many security-critical apps, e.g., the popular Signal messenger
app. While mitigation strategies exist, they come at a cost, and further
research is necessary to overcome the open problem of side-channel attacks
on user input.
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Appendix

A. Cache-hit ratios (extended)

The cache hit ratio for all lowercase characters with Flush+Reload can be
seen with Figure 10.8 and all alphanumeric characters for the page cache
attack Figure 10.7.
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Figure 10.7.: Cache-hit ratio using a page cache attack for alphanumeric char-
acters in Chrome.
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Figure 10.8.: Cache-hit ratio using Flush+Reload for lowercase letters in
Chrome.
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