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Abstract
There is a constant evolution of technology for cloud envi-
ronments, including the development of new memory storage
technology, such as persistent memory. The newly-released
Intel Optane persistent memory provides high-performance,
persistent, and byte-addressable access for storage-class ap-
plications in data centers. While Optane’s direct data man-
agement is fast and efficient, it is unclear whether it comes
with undesirable security implications. This is problematic, as
cloud tenants are physically co-located on the same hardware.

In this paper, we present the first side-channel security anal-
ysis of Intel Optane persistent memory. We reverse-engineer
the internal cache hierarchy, cache sizes, associativity, replace-
ment policies, and wear-leveling mechanism of the Optane
memory. Based on this reverse-engineering, we construct four
new attack primitives on Optane’s internal components. We
then present four case studies using these attack primitives.
First, we present local covert channels based on Optane’s
internal caching. Second, we demonstrate a keystroke side-
channel attack on a remote user via Intel’s Optane-optimized
key-value store, pmemkv. Third, we study a fully remote
covert channel through pmemkv. Fourth, we present our Note
Board attack, also through pmemkv, enabling two parties to
store and exchange messages covertly across long time gaps
and even power cycles of the server. Finally, we discuss
mitigations against our attacks.

1 Introduction

Microarchitectural side-channel attacks use information from
the microarchitecture layer to infer secrets on the software
layer. Targets of side-channel attacks include hardware and
software caches [32, 36, 75, 78, 109] and branch predictors [1,
3, 26]. For example, Prime+Probe [75] can observe memory
accesses at a cache set granularity, and Flush+Reload [109]
further improves the granularity to a single cache line. Re-
cently, transient-execution attacks [14], such as Spectre- and
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Meltdown-type attacks [13, 56, 66, 85, 93, 94, 97, 104], rely
on side channels and have shown significant impact, drawing
extensive attention. Especially in today’s cloud environments,
multiple users are co-located on the same server and share
hardware components for better resource utilization [9]. Thus,
side-channel attacks have become a prominent issue.

A successful microarchitectural side-channel attack re-
quires detailed knowledge about the target microarchitecture.
However, this knowledge, relevant for the security of the over-
all system, is usually not publicly documented but propriety.
Therefore, prior works reverse-engineered hardware com-
ponents to assess their relevance for security. For example,
DRAMA [79] reverse-engineered the DRAM addressing to
establish a covert channel and spy on co-located processes;
Gras et al. [30] reverse-engineered the translation-lookaside
buffer (TLB) to leak sensitive information, such as crypto-
graphic keys. Consequently, it is crucial to reverse-engineer
newer technologies to assess their security properties before
they are widely deployed and potentially threaten the users.

One such newer technology is a new type of memory,
namely persistent memory. As Intel has released the Op-
tane DC Persistent Memory (DCPMM) [46], this technology
becomes commercially available.1 Optane persistent memory
DIMMs are installed on the memory bus alongside regular
DRAM DIMMs, and deliver performance close to DRAM
but persistence similar to hard drives. To leverage its high
performance and persistence, systems usually expose Optane
persistent memory directly to applications by mounting it in
the direct access (DAX) mode (e.g., the EXT4 file system has
a DAX mode optimized for Optane [43]). The DAX mode
bypasses the file system, allowing programs to use load and
store instructions to directly operate on persistent data. There-
fore, Optane memory is good for storage-class applications,
such as key-value stores [39, 48, 63] and databases [40, 41].
As Amazon and Google offer Optane memory [8, 10] already
to cloud users, we need to ask the question: Does Optane

1Optane DC Persistent Memory is different from the older Optane-based
NVMe SSD. For simplicity, we refer to Optane DC Persistent Memory as
Optane persistent memory (or Optane in short) afterward.



persistent memory introduce new side-channel attacks that
undermine system security and confidentiality?

In this work, we answer this question in the affirmative. We
study and exploit side channels in the new Optane persistent
memory. The foundation of our side-channel attacks is a thor-
ough reverse-engineering of the microarchitectural (internal
hardware) components of the Optane persistent memory. We
identify and quantify correlations between memory access
patterns and timing differences induced by Optane persis-
tent memory. More concretely, we study the internal cache
hierarchy and the controlling logic that prolongs the device
lifetime via wear-leveling. As Optane is transparent to the
processor via the DDR-T protocol [24], these elements of the
Optane microarchitecture are not architecturally visible but
only indirectly through timing differences.

Our reverse-engineering is the first to reveal security-
critical low-level details of Optane’s internal cache structures,
e.g., their cache associativity and replacement policies, and
the execution logic of the wear-leveling mechanism. Conse-
quently, we construct four attack primitives for novel side-
channel attacks and covert channels, based on (1) the Read-
Modify-Write (RMW) buffer caching recently accessed cache
lines in Optane, (2) the Address-Indirect-Translation (AIT)
buffer caching recently used physical-to-internal address map-
pings, (3) read-write contention, inducing timing differences
due to the conflicting concurrent operations, and (4) wear-
leveling events, that induce latency-increasing effects.

In this work, we showcase four novel attacks using Optane
persistent memory. First, we evaluate local cross-core covert
channels based on our attack primitives, where the sender
and receiver are co-located on the same server, sharing the
same Optane DIMM. Even with isolation from the operating
system, i.e., no direct data sharing and communication, the
sender is able to transmit secrete data by creating timing
differences via Optane internal structures. We evaluate three
covert channels using attack primitives 1–3 described above.

Second, we present a keystroke timing attack, where a
remote typer saves text into Intel’s Optane-optimized key-
value store, pmemkv [48]. A co-located attacker monitors the
Optane DIMM’s to observe events that update the typer’s
text in the key-value store. Thus, the attacker can record the
inter-keystroke timing and potentially infer the typer’s inputs.

Third, we present a remote covert channel, where sender
and receiver run on different servers with network access to
the pmemkv key-value store. The sender and receiver have
a key that they can both update to communicate openly but
want to exchange information covertly. That is, they do not
exchange information directly using the values, i.e., the values
can be completely unrelated text. We show that the high
wear-leveling latency of the Optane memory is large enough
(around 50 µs) for measurement across the network.

Finally, we present a remote Note Board attack, exploiting
the persistence of Optane memory. Similar to the third attack,
the sender and receiver are located on different servers, with-

out direct message exchange. They do not probe the pmemkv
server simultaneously. Instead, the sender stores a message on
a covert Note Board, for the receiver to retrieve at a later time.
This Note Board uses the internal properties of Optane behind
a key-value store, by selectively applying repeated updates
to different keys to set the wear-leveling metadata. As the
wear-leveling metadata is persistent, even after 24 hours or
reboots, the Note Board message can still be retrieved.

To summarize, we make the following contributions:
1. We present the first side-channel security analysis of Intel

Optane persistent memory, for which we reverse-engineer
the cache hierarchy, cache sizes, associativity, replace-
ment policies, read-write contention, and wear-leveling.

2. We construct four attack primitives from our reverse-
engineering, exploiting the timing of the RMW buffer,
the AIT buffer, read-write contention, and wear-leveling.

3. We demonstrate local and remote attacks, e.g., a remote
keystroke timing attack on a remote typer, a remote covert
channel where sender and receiver covertly communicate
across the network, as well as local covert channels.

4. We demonstrate a novel type of covert attack, exploit-
ing the persistence property of wear-leveling in Optane
memory. Our Note Board attack lets an attacker covertly
store a secret message on a server using Optane, which a
receiver can read even after 24 hours or a system reboot.

In Section 2, we provide background on side channels and per-
sistent memory. Section 3 reverse-engineers Optane memory
with a focus on security and uncovering our attack primitives.
Section 4, 5, and 6 present a local covert channel, a remote
keystroke timing attack, and a remote covert channel. Sec-
tion 7 presents our Note Board attack. Section 8 discusses
future work and countermeasures. Section 9 concludes.

2 Background

We first discuss side channels, and then Optane persistent
memory and its potential vulnerability to side-channel attacks.

2.1 Side-Channel Attacks
Instead of directly exploiting information leakage vulnera-
bilities in interfaces, side channels observe the behavior of a
target system [57], e.g., power consumption, EM radiation, or
timing, and deduce secrets from this meta-information.
Cache attacks. Cache attacks target the caches of modern
processors, with most techniques being Prime+Probe [68, 70]
and Flush+Reload [109]. Both enable a local attacker to
observe cache activities of co-located programs via timing
differences in memory accesses. Both techniques were used
to build fast and stealthy covert channels [34,37,49,50,82,109,
113], i.e., side channels with a colluding victim exfiltrating
data. NetCAT [59] showed that cache timing differences can
even be induced and exploited over the network on systems
with RDMA or DDIO support. However, Intel recommends



disabling RDMA and DDIO in untrusted networks to mitigate
the attack. More recently, cache attacks gained substantial
attention as building blocks of transient-execution attacks [13,
14,56,66,85,93,94,97]. Schwarz [87] demonstrated that such
attacks can also be exploited remotely.
Reverse-Engineering and Side Channels. Previous works
reverse-engineered undocumented hardware to assess their
attack surface and security relevance. For example, DRAMA
exploits DRAM row buffers to establish a covert channel and
monitor memory accesses [79], which is enabled by reverse-
engineering DRAM addressing functions. Gras [30] exploit
the Translation-Lookaside Buffer (TLB) to leak sensitive in-
formation such as cryptographic keys, which is enabled by
reverse-engineering the TLB internal behavior. These exam-
ples show that with co-location and hardware sharing in the
cloud, side channels are an immediate threat. We need to find
and mitigate these new attacks before they are exploited.

2.2 Optane Persistent Memory

In conventional systems, the main memory (typically DRAM)
is fast and byte-addressable but has relatively low capacity,
and the separate storage (e.g., SSD and HDD) is persistent and
high-capacity. Recently, a new class of memory, persistent
memory, became commercially available, as Intel has released
the DC Optane Persistent Memory Module (DCPMM) [46],
featuring advantages of both fast memory and persistent stor-
age. It is installed on the main memory bus and can be directly
accessed via load/store instructions. Programs can bypass
the file system to manage their persistent data on Optane
directly for better performance. A common approach is to
mount Optane in the direct access (DAX) mode provided by
standard file systems (e.g., EXT4 and XFS) and memory-map
an Optane-backed file to the program’s virtual address space
for direct access [43]. Typical use cases of persistent memory
include key-value stores [39, 48, 63], databases [40, 41], and
customized storage applications [5, 62]. Because of these
benefits, major cloud providers, such as Amazon [8] and
Google [10], have already deployed Optane.
Internal hardware design of Optane. An Optane DIMM
consists of several components [51], as shown in Figure 1. As
a single Optane storage chip has limited performance, these
internal components bridge the performance gap. First, an
Optane DIMM integrates multiple Optane storage chips that
can be accessed in parallel for higher bandwidth. Second,
similar to flash chips in SSDs [15, 55], Optane chips also
have a limited write endurance [99]. Therefore, the Optane
controller performs wear-leveling by changing the mapping
between the physical and Optane’s internal addresses after a
number of accesses. Thus, each access performs a physical-
to-internal address translation before accessing the Optane
media. Third, to hide such translation latency, the DIMM has
SRAM and DRAM caches to buffer both data and address
translation. Finally, the Optane DIMM uses residual capac-

○ Multiple storage media chips
○ Controller (with SRAM buffers)

○ DRAM buffer
○ Capacitors (to writeback buffers)

Figure 1: Components inside an Optane DIMM.
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Figure 2: Internal memory hierarchy of an Optane DIMM.

itors to back up these volatile caching structures to ensure
persistence.

2.3 Existing Optane Characterization
As Optane persistent memory is a sophisticated system with
buffers, caches, and specialized controllers, software devel-
opers need to model the performance and runtime behav-
ior to optimize software systems for Optane. Thus, prior
works have characterized performance metrics of Optane
[35, 52, 102, 107, 110]. Figure 2 illustrates Optane’s inter-
nal hierarchy, according to their characterizations and In-
tel’s official documentation. On the CPU side, the Write-
Pending Queue (WPQ) issues 64 B read/write accesses to
the Optane persistent memory. Correspondingly, on the Op-
tane side, the Load-Store Queue (LSQ) accepts the incoming
64 B accesses. After the LSQ, accesses coalesce into 256 B
blocks. These merged accesses then enter a Read-Modify-
Write (RMW) buffer, which caches 64 entries of 256 B blocks
(a total of 64 kB of data), similar to data caches in the CPU.
The RMW buffer is also used as a write-back cache, i.e., be-
sides reads, writes also use the RMW. As introduced earlier,
the physical address is translated to an Optane-internal ad-
dress at 4 kB granularity. Thus, if an access misses the RMW
buffer, it is translated before accessing the storage media.
An Address-Indirection-Translation (AIT) buffer maintains
a DRAM-based lookup structure to cache 4096 translation
entries (covers 16 MB of data in total), much like the CPU’s
TLB that caches virtual-to-physical address translation.

As Optane has an internal memory system, like CPUs,
we study its security properties and whether it facilitates
new side-channel attacks. Existing characterization works
[35, 52, 102, 107, 110] do not permit such security insights,
as security-critical aspects like replacement policy and as-
sociativity are unclear. In this work, we aim to close this
gap. Wang et al. also investigated the side-channel aspects
of Optane in their concurrent work [103], demonstrating the
importance of uncovering security implications of this new
memory technology.

3 Reverse-engineering and Attack Primitives
In this section, we start with the foundation to the attack
primitives—our reverse-engineering of low-level details of



Optane. We then construct four new attack primitives based
on the side channels in the different components.

3.1 System Configuration
Table 1 lists our system configuration: a Lenovo SR650 server
with an Intel Xeon Cascade Lake CPU (20 cores) and an
Optane DC Persistent Memory Module (DCPMM) installed
alongside DRAM modules, running Ubuntu 18.04 (kernel
v5.4). Optane runs in the App Direct mode for direct ac-
cess using an Optane configuration tool, ipmctl [44]. The
software system is configured with a compatible environ-
ment, including Intel’s persistent memory controlling tool,
ndctl [45], and a library for persistent memory, PMDK [47].
We mount Optane as EXT4-DAX for direct management of
the persistent data, a typical setup of Optane [43,47]. Through
the paper, we follow this setup, with the exception of reverse-
engineering (Section 3), where we disable the prefetcher to
reduce the noise. In all case studies (Section 4–7), we enable
all prefetchers to create a realistic environment.

3.2 Overall hierarchy in Optane

First, we reverse-engineer the internal cache hierarchy, i.e.,
the number of caches and cache sizes. We perform a unit test
to find out the relationship between the memory footprint and
the read latency. We take an approach similar to prior Op-
tane characterization work [102]: the test program allocates
variable-sized memory pools on Optane, and in each region,
the program randomly reads 64 B chunks of data following a
pointer-chasing pattern. As the program only accesses each
64 B chunk once, CPU caching does not affect the timing.
Optane has large cache line sizes as discussed in Section 2.3
(256 B for RMW and 4 kB for AIT). Therefore, the first 64 B
read brings data into the Optane-internal caches, and future
accesses to adjacent 64 B blocks in the same Optane-internal
cache line may become hits (if not evicted). This way, the
footprint-latency relation can reveal Optane’s cache sizes.

Figure 3 shows memory footprint (x-axis) and average read
latency over 100 runs (y-axis). We observe two knee points,
one at 16 kB and one at 16 MB. The first knee point is the
Read-Modify-Write (RMW) buffer, and the second is the
Address-Indirection-Translation (AIT) buffer. Figure 4 shows
the distribution of AIT and RMW latencies. On average
(n = 100), a read that hits RMW takes 157.3 ns (σ = 1.5%),
misses RMW but hits AIT takes 350.6 ns (σ = 6.1%), and
misses both RMW and AIT takes 426.5 ns (σ = 1.2%). Note
that the latency values in Figure 3 for RMW/AIT hits are
higher because the first access to each RMW/AIT cache line
is a miss but subsequent ones are hits. In summary, our results
are consistent with prior works [35, 38, 52, 102, 110].

We next focus our reverse-engineering on two internal
cache structures (RMW buffer and AIT buffer) and two major
effects (wear-leveling and internal read-write contention).

Table 1: System hardware and software configuration.

CPU Intel Cascade Lake, 2.1GHz, 20 cores
DRAM 6x16GB DDR4, 2666MT/s

Optane
1x128GB Intel Optane DCPMM,
App Direct mode, mounted as EXT4-DAX

NIC Intel X550-T2, 10Gbps
Switch Mikrotik CRS305-1G-4S, 10Gbps

Env.
Ubuntu 18.04, Linux kernel v5.4,
gcc/++-7.5, PMDK v1.9, ndctl v68, ipmctl v02.00.00.3852
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3.3 Read-Modify-Write Buffer

So far, we know the RMW buffer, the first caching structure
an Optane access encounters, is 16 kB with a cache line size
of 256 B. To enable side-channel attacks, there are two key
properties: the cache replacement policy and its associativity.
This section presents our reverse-engineering approach and
our conclusions on these properties. In addition, we present
our findings on instructions that can flush RMW entries.

3.3.1 Associativity

A set-associative cache usually determines the cache set using
certain address bits—addresses that share certain common
bits go to the same cache set. Inspired by prior work on
CPU cache reverse-engineering [71], we take an approach
that masks off different bits (i.e., set as the same value) and
measure the Optane access latency. However, different from
their approach, which directly uses performance counters to
observe the latency, we measure the average access latency
with a pointer-chasing approach similar to previous works
on cache eviction [18, 105]. Specifically, our test program
masks off bits from bit 8 (the bit after 256 B RMW cache
line’s block offset) to bit 21 (start counting from bit 0). In a
set-associative cache, when bits that determine the cache set



are masked off, the measured cache size is reduced, i.e., the
knee point where read latency starts to increase comes early.
We present the result in Figure 5a, where the x-axis is the
memory footprint, the y-axis is the average read latency, and
each legend indicates a curve with the labeled bit masked off
(start counting from bit 0). Unlike a set-associative cache, we
find that the measured RMW buffer size stays largely the same
with different bitmasks. Note that we present five bitmasks
for clarity; other bitmasks also have no latency effect. Thus,
we conclude that the RMW buffer is fully associative.

3.3.2 Replacement Policy

We reverse-engineer the replacement policy of the RMW
buffer, i.e., in which order cache lines are replaced. We design
a unit test that first fills up the RMW buffer with N distinct
256 B blocks, and then accesses them again in different or-
ders: same order as the first round, reverse order, and random
order. According to prior works that reverse-engineers cache
replacement policies [31, 105], an LRU cache has only hits in
the second round if N is below the capacity, i.e., 64 for RMW,
regardless of the access order. However, for N > 64, misses
will happen. When accessing the same set of blocks in the
same order as the first round, all reads are misses for an LRU
cache, as the next read evicts the oldest line, which is exactly
the next line to read. Figure 5b shows the RMW miss rate
under these three access orders (100 runs each) and variable
N values. Our result matches the behavior of an LRU cache,
where the miss rate suddenly reaches 100 % when N > 64. In
contrast, with the second reverse round, the first accesses still
hit, which is better than the random access order. The random
access order also has a higher miss rate than the reverse order.
We conclude that the RMW buffer uses LRU replacement.

3.3.3 RMW Cache Flush

Though prior works have studied the caching effect in Op-
tane [35,102,110], there has not been any study on whether it
is possible to flush data from the RMW buffer to gain direct
access to the AIT buffer. We start with testing the CLFLUSH
instruction. Figure 6 presents two histograms: one for the nor-
mal RMW hit latency and another for the case with a CLFLUSH
to the whole 256 B RMW cache line between two reads. We
observe that the normal RMW hit latency is 157.3 ns (n= 100,
σ = 1.5%); whereas with a CLFLUSH in between, the latency
is 350.6 ns (n = 100, σ = 6.2%), which is similar to an RMW
miss. We also evaluated other cache flush/write-back instruc-
tions, CLFLUSHOPT and CLWB, and find that they both flush the
RMW buffer.

Conclusion: The RMW buffer is a fully-associative cache
with LRU replacement policy.2CPU instructions, such as
CLFLUSH and CLWB, not only flushes CPU caches but also
flushes RMW cache lines.
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Figure 5: RMW (a) associativity using variable bitmasks and
(b) replacement policy using different access patterns.
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Figure 6: Effect of CLFLUSH to RMW buffer.

3.4 Address-Indirection-Translation Buffer

Optane has an internal address, different from the physical
address, to enable wear-leveling and prolong the lifespan
(Section 2.2). The AIT buffer caches the physical-to-internal
mapping at 4 kB granularity, like the TLB in a CPU.

3.4.1 Associativity

Similar to reverse-engineering the RMW buffer, a unit test
reading from different addresses determines whether the mea-
sured AIT capacity changes when masking address bits. We
first mask bit 12 (after the block offset of 4 kB pages), and
gradually increase the position of the masked-off bit. We
measured the average latency over 100 runs with no bitmask
(original latency) and all different bitmasks (Figure 7a shows
5 of them). We observe that the knee point, indicating the
AIT buffer’s capacity, shifts to 8 MB (1/2 of AIT capacity)
when a bit between 12 and 19 is masked off but stops reduc-
ing when the bitmask moves to bit 20. We further mask off
bit 12-13 and find the knee point becomes 4 MB (1/4 AIT
capacity), and mask off all bits between 12-19 and observe a
knee point of 64 kB (1/256 of AIT capacity). Thus, 64 kB is
the capacity of one set. As each cache line in the AIT is 4 kB,
one set contains 16 ways. Thus, the AIT buffer is a 16-way
set-associative cache, with bits 12-19 as the index.

2Due to the high overhead of maintaining a true LRU policy, real-world
processors tend to use pseudo LRU [23,27,100], which is also likely the case
for Optane.



3.4.2 Replacement Policy

Like for the RMW buffer, we run a unit test reading a variable
number of distinct AIT cache lines (4 kB) in three orders:
same, reverse, and random. All AIT cache lines have the
same bitmask (bit 12-19) to cache them in the same AIT
set. To avoid the second round of accesses hitting the RMW
buffer, we shift them by 256 B (i.e., original address + 256).
Figure 7b presents the miss rate results (over 100 runs), as the
number of AIT cache lines (N) and access order vary. Sim-
ilar to the RMW results (Figure 5b), the miss rate increases
when the number of AIT cache lines reaches 13. Prior work
suggested that the AIT buffer may have a prefetcher [102].
Therefore, the miss rate may increase even before the size of
each way (16). The same access order test has the worst miss
rate increase, the reverse order performs best, with random or-
der in between. Thus, same as in Section 3.3.2, we conclude
that each set of the AIT buffer uses LRU replacement.

Conclusion: The AIT buffer is a 16-way set-associative
cache (with 256 sets), with LRU replacement.2

3.5 Wear-leveling
Wear-leveling in Optane remaps a physical address to a new
page and migrates the existing data after this location has
been repeatedly written to. Prior work on Optane memory
has identified a significant latency increase after repeatedly
writing 256 B of data to the same location [102] (finer-grained
writes can be merged in the RMW buffer). We now perform
a more thorough reverse-engineering of wear-leveling.

3.5.1 Wear-leveling Timing

We first evaluate a unit test that repeatedly writes 256 B of data
to the same location on Optane, similar to prior characteriza-
tion work [102]. Figure 8a shows the write latency of a 256 B
block (followed by a CLFLUSH) periodically increases. Fig-
ure 8b shows a latency histogram of 100 wear-leveling events:
the average write latency is 562.8 ns (n = 100, σ = 5.4%)
but significantly increases to an average of 49.6 µs (n = 100,
σ = 2.5%) during wear-leveling. This observation is also
consistent with prior work [102].

3.5.2 Effect of Reads and Writes to Wear-leveling

The wear-leveling latency is prominent but requires a large
number of writes (>10 000) to trigger. Different from prior
works that only perform writes [102], in this experiment, we
test the effect of reads on wear-leveling counters. Figure 9
shows two histograms (both with 100 samples) on the num-
ber of writes it takes to trigger a wear-leveling event, one
with writes and flush only (same as the experiment in Fig-
ure 8a), and another with a read to the same address after
each write and flush (i.e., Write+Flush+Read). We observe
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Figure 7: AIT (a) associativity using variable bitmasks and
(b) replacement policy using different access patterns.
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Figure 8: (a) latency of wear-leveling compared to normal
writes and (b) a histogram of wear-leveling latency.
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Figure 9: Number of writes to trigger one wear-leveling event.

that, with a read following each write, the average number
of writes needed is 2625.7 (n = 100, σ = 10.8%), compared
to 11 646.8 (n = 100, σ = 17.0%), if no reads. In addition,
we test a case of read-only but fail to observe wear-leveling.
Therefore, the read must be applied to a modified location to
accelerate the wear-leveling effect.

Conclusion: The wear-leveling event has 88.1× higher
latency than normal writes. With a read following each
write (same location), the number of writes needed to trig-
ger wear-leveling can be 4.4× less. This finding makes it
more practical to construct a wear-leveling-based channel.

3.5.3 Wear-leveling Granularity

Though prior characterization [102] has shown that the
internal- to physical-address mapping has a granularity of
4 kB, the wear-leveling granularity remains unknown. To use
wear-leveling as an attack primitive, we target two new re-
search questions. (1) As the wear-leveling counter determines
whether a block needs to be remapped, what granularity does
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Figure 10: Experiments for reverse-engineering: (a) counter
granularity and (b) remapping granularity of wear-leveling.
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Figure 11: Effect of read-write contention.

each wear-leveling counter cover? (2) When a remapping
happens, what is the granularity of remapping?
(1) Counter granularity. We take a novel approach that
initializes the wear-leveling counter of a 256 B block and
then checks how many extra writes it takes to trigger a wear-
leveling event on top of the initialized wear-leveling counter in
nearby locations. This approach can determine the granularity
each wear-leveling counter covers. Based on this idea, the
test program first performs an initial of 5000 writes of 256 B
blocks to a 4 kB-aligned location A (with a flush after each
write). Then, it measures the number of additional 256 B
writes it takes to trigger a wear-leveling event at location
A+offset ·256. Figure 10a shows this number with variable
offset values (average over 100 runs). We observe that, when
offset · 256 = 0, the number of additional writes is around
5000. However, when offset ·256 > 0, the additional writes
are always greater than 10 000, indicating that the initial 5000
writes have not been taken into the counter. Therefore, the
wear-leveling mechanism has a counter granularity of 256 B.
(2) Remapping granularity. We take another novel ap-
proach that initializes wear-leveling counters of a 256 B block
(i.e., location A), trigger wear-leveling at a nearby location
A+offset ·256, and measure how many extra writes it takes to
trigger wear-leveling at A. If the other location A+offset ·256
falls into the remapping granularity with A, it will take more
writes to trigger wear-leveling at A again as remapping has
happened; otherwise, it will take less writes as the initializa-
tion of wear-leveling counters at A remains. Specifically, the
test program first performs 5000 initial writes of 256 B blocks
to a 4 kB-aligned location A. Then, it keeps writing to loca-

tion A+ offset · 256 until wear-leveling is detected. Finally,
it measures the number of writes to trigger wear-leveling at
location A. Figure 10b shows this number with variable offset
values (n = 100). We see that when offset · 256 < 4kB, the
average number of extra writes to trigger a wear-leveling is
around 10 000 but halved when offset ·256 ≥ 4kB. Thus, the
remapping granularity is 4 kB, matching the AIT granularity.

Conclusion: The wear-leveling mechanism has a remap-
ping granularity of 4 kB but each individual 256 B block
has its own counter for wear-leveling. Once wear-leveling
happens, the counters in all 256 B blocks are reset.

3.6 Read-Write Contention

Past characterizations on Optane [12, 35, 52] reveal that the
read bandwidth of Optane is around twice higher than that
of writes, but they do not study how writes affect the timing
of reads. To understand read-write contention in Optane, we
design a unit test program, where a main thread performs
random reads using pointer-chasing and another co-located
thread performs random reads/writes at the same time (to
independent addresses). Both threads are pinned to differ-
ent cores using taskset. We further control the type of
accesses in the other thread as well as the intensity. Figure 11
demonstrates six histograms (n = 100 in each) for the read
latency of the main thread, with different types of co-located
threads: 100 % read intensity and 30–100 % write intensity.
We observe that, with another reader thread of 100 % intensity,
the main thread has a minor increase in latency—389.5 ns
(n = 100, σ = 2.8%) of normal read latency increased to
395.1 ns (n = 100, σ = 2.8%). In comparison, with another
writer thread, even at 10 % intensity, the increase in latency
is significant (average is 466.9 ns, n = 100, σ = 4.1%). And,
with higher write intensity (100 %) in the co-located thread,
the read latency increases to 1047.9 ns (n = 100, σ = 2.9%).

Conclusion: In Optane persistent memory, writes can seri-
ously content with reads and cause read latency to increase.
Therefore, it is possible to sense write activities from other
programs using a unit test of reads.

3.7 Summary of Attack Primitives

In summary, we build four attack primitives using the follow-
ing timing channels:
1. There is an exploitable difference of 193.3 ns between hit

and miss latency of the RMW buffer during read access.
2. There is an exploitable difference of 75.9 ns between hit

and miss latency of the AIT buffer during read access.
3. For read-write contention, the read latency has a signifi-

cant increase of 658.4 ns with background write activities.
4. A higher wear-leveling latency due to repeated writes—an

increase of 49.0 µs latency over normal writes.



4 Local Cross-Core Covert Channel

In this case study, we evaluate local cross-core covert channels
based on our attack primitives. The transmission rates are
upper bounds for the capacity of our side channels, following
the methodology of prior works [33, 34, 37, 64, 72, 109].

4.1 Attack Model
We assume that sender and receiver are co-located on a server,
using different cores, and share the same Optane DIMM. They
are isolated by the OS without any means to communicate.
Sender and receiver maintain separate memory-mapped files
on an Optane DIMM, isolated by the file system. The platform
follows the same configuration as Section 3.1, with CPU
prefetchers enabled. We illustrate this setup in Figure 12.

4.2 Attack Design
To establish a covert channel, we use three attack primitives:
the timing differences of the RMW buffer, the AIT buffer,
and read-write contention. Next, we explain the details.
RMW-based covert channel. As the RMW buffer is a cache-
like structure, we take the commonly-used Prime+Probe ap-
proach to establish the covert channel. The sender reads from
the sender’s file repeatedly when sending a bit of 1, and stays
idle when sending a bit of 0 (step 1 ). In the meantime, the
receiver keeps performing Prime+Probe (step 2 ): first read
from a set of random locations (in a pointer-chasing pattern)
on the receiver’s memory-mapped file (as prime), wait for the
sender’s activities, and read from these locations again (as
probe). Thus, sender’s reads will evict receiver’s reads from
RMW and increase the probe latency. However, reads may
hit CPU caches before accessing the RMW buffer in Optane.
Therefore, we take advantage of the larger cache line size
of the RMW buffer by shifting the accesses by 64 B during
probe. This way, the reaccesses during probe can bypass CPU
caches and check if the primed locations hit the RMW buffer.
AIT-based covert channel. Due to the similarities between
the AIT and RMW buffers, we take a similar Prime+Probe
approach as the RMW buffer, except for two differences.
First, besides the CPU cache, a channel based on the AIT
buffer also needs to avoid RMW cache hits. Based on the
reverse-engineering on RMW buffer flush (Section 3.3.3), the
receiver’s program issues CLFLUSH instructions to locations
covered by the accesses during prime. Thus, accesses during
probe can bypass the RMW buffer and infer whether these
locations hit the AIT buffer. Second, as the AIT buffer is set-
associative (Section 3.4.1), both the sender and the receiver
only read from addresses that belong to the same AIT set.
Read-write-contention-based covert channel. The sender
writes to the sender’s file when sending a bit of value 1 and
stays idle when sending a bit value of 0 (step 1 ). In parallel,
the receiver performs random reads (step 2 ) following a
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Figure 12: Local covert channels based on the (a) RMW
buffer, (b) AIT buffer, and (c) read-write contention.

0 5 10 15 20
0

500

1000

1500

2000 Message:
1 0 1 1 1 1 0 0 1 1 0 1 0 1 1 0 0 0 0 0

Bits in the message

C
ha

nn
el

tim
in

g
(n

s)

RMW buffer AIT buffer Read-write Contention

Figure 13: A demonstration for the local covert channels.

pointer chasing pattern to create cache misses (CPU caches,
RMW buffer, and AIT buffer) and fetch data from the Optane
media. As our reverse-engineering in Section 3.6 has shown,
the existence of writes can significantly degrade the read
latency. Thus, when detecting a significant increase in read
latency, the receiver can determine that the current bit is a 1.

4.3 Attack Setup
We run these local covert channels in a system described in
Section 3.1. The sender and the receiver create two separate
files on a shared Optane DIMM, following our attack model
(Section 4.1). Because of the LRU replacement policy (Fig-
ure 5b and 7b), we find that the receiver only needs to prime
a few buffer entries, as long as the sender causes sufficient
evictions. In the RMW-based covert channel, the receiver
primes 8 entries and probes them with a fixed threshold of
238 ns; in the AIT-based covert channel, the receiver primes
3 entries and probes them with a fixed threshold of 376 ns.

4.4 Results
Demonstration. Figure 13 demonstrates our approach. The
x-axis shows the bit sequence in the message and the y-axis
shows the timing differences the receiver observes in each
channel. When sending a bit value of 1, the receiver’s prober
can detect a latency increase. We observe that the read-write
contention has the most significant effect, which is consistent
with our finding that writes can seriously content with reads
(Section 3.6). In comparison, the hit/miss timing difference
in RMW is less substantial and is the lowest in AIT.
Bandwidth and accuracy. We evaluate each channel by
having the sender transmit 1000 bits to the receiver over 100



Table 2: Local covert channel (n = 100).

Channel BW (kbit/s) Acc (%) σBW σAcc

RMW 11.35 99.60 0.005% 0.17%
AIT 10.50 98.26 0.004% 1.81%
Contention 2.33 99.60 0.0003% 0.14%

Table 3: Comparison with existing cross-core covert channels
without shared memory.

Methods Bandwidth Error Rate

DRAMA [79] 300 kB/s 1.8 %
Prime+Probe [33] 67 kB/s 0.36 %
This work (with RMW buffer) 1.42 kB/s 0.4 %
Memory Bus Locking [106] 93 B/s 0.09 %
RAPL [65] 2.3 B/s 0.89 %

runs. Table 2 presents the results. We observe that the RMW-
and AIT-based channels have similar bandwidths, 11.35 and
10.50 kbit/s, but the contention-based channel has a lower
bandwidth of 2.33 kbit/s. Although the timing difference
from read-write contention is significant, the sender needs to
spend more time performing writes due to the slower write
performance. Despite the bandwidth differences, all three
covert channels have an accuracy higher than 98 %.
Comparison with existing covert channels. Our cross-core
covert channel does not rely on shared memory. Our results
are in a similar range as other covert channels without shared
memory [65,68,70,79,86,89,106]. Compared to other cache-
based covert channels [68, 70, 72], similar techniques can
be applied to improve the performance. The covert channel
noise can be further reduced by applying more advanced
statistical and error-correction techniques (e.g., the proposal
by Maurice et al. [72]). Table 3 compares our Optane-based
cross-core covert channel with existing methods.

5 Keystroke Attack

In this section, we introduce a case study of the keystroke
side-channel attack using Prime+Probe on the RMW buffer.

5.1 Attack Model

We assume a scenario where a victim types into a web inter-
face, and each keystroke is sent to a web server that maintains
storage on Optane. For every keystroke typed by the victim,
the website sends an update request to the key-value store
(KV-store) server in order to track the user’s latest update. We
assume that the attacker is co-located with the KV-store appli-
cation on the same server and shares the same Optane DIMM.
However, the existing OS-level isolation disallows any direct
communication between the attacker and the KV-store.

❹❶

❷ ❸

Figure 14: Keystroke side-channel attack.

5.2 Attack Design
The keystroke side-channel attack assumes an attack model as
described in Figure 14. Similar to a Prime+Probe attack, the
attacker can infer keystrokes via the RMW side channel as
follows. First, the attacker types a letter which is transmitted
via WebSockets to the KV-store server (step 1 ). The KV-
store then stores the letter to Optane (step 2 ). In parallel,
the attacker constantly primes the RMW buffer (step 3 ) and
then probes the memory by reaccessing. The attacker infers
whether a key is inserted based on the timing of reaccesses
(step 4 ). The Prime+Probe approach is similar to the one in
the RMW-based local covert channel (Section 4.2). When a
key was inserted due to the typer’s keystroke, the attacker can
sense an increased latency during probing; when the timing
stays low, the attacker can deduce with a high probability that
there was no keystroke input to the KV-store.

5.3 Attack Setup
We run the experiment in our lab environment using two
servers connected via a hardware switch in the local net-
work (configuration in Table 1). We choose Intel’s Optane-
optimized KV-store pmemkv [48] as the storage backend, with
Intel’s concurrent hash map (cmap) as its internal engine. It is
connected through WebSocket to save the typer’s inputs. We
use a public keystroke dataset that contains inter-keystroke la-
tencies from 100 different typers typing the same eight-letter
password “try4-mbs” 10 times [69], resulting in a total of
7000 inter-keystroke timings. The client (victim) simulates
the individual typers by sending keystrokes delayed by the
prerecorded inter-keystroke timings. As Figure 4 shows, an
RMW hit can be clearly distinguished from a miss. Thus, we
choose a fixed threshold of 285 ns to distinguish RMW hits
from misses. The attacker starts the Prime+Probe attack with
a co-located program and detects the inter-keystroke timings,
by probing the RMW buffer every 9.52 ms.

Our evaluation covers a noise-free scenario and scenar-
ios with other co-located activities. We run another pmemkv
instance that shares the same Optane DIMM, which contin-
uously processes random, independent requests. As writes
to Optane have a higher latency impact (Section 3.6) and
can trigger wear-leveling (Section 3.5), we take a relatively
update-heavy input, which consists of 80 % read (GET) and
20 % update (PUT) requests [6, 16]. Under this ratio, we eval-
uate three levels of intensity: 70 %, 40 %, and 10 %, which
correspond to High, Medium, and Low background noise.
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Figure 16: The time distribution of the reference typers com-
pared to the error’s distribution of the RMW side-channel.

5.4 Results

To determine the accuracy of our attack, we calculate the
timing difference between the ground-truth latencies from
the prerecorded dataset and the detected ones. We repeat
the experiment 100 times with all the 7000 inter-keystroke
timings and observed an overall error rate of 1.04 % in the no-
noise scenario. Figure 15 shows the results of one run in the
time domain, where the difference between the RMW side-
channel and the ground-truth is negligible. Figure 16 shows
further analysis of the error distribution of the RMW channel
compared to the timing distributions of the ground-truth. The
distribution of the ground-truth inter-keystroke timings (on
average 271.90 ms, σ = 53.47%) is 82.4× larger compared
to the error of the received timings over the RMW channel
(on average 3.30 ms, σ = 68.78%). We observe a maximum
time difference between the RMW channel and the ground
truth of about 20 ms. The error rate of 1.04 % consists of
two distinct error types. First, the inter-keystroke timing can
be split into two RMW events, leading to smaller observed
differences in the RMW side-channel. Second, two inter-
keystroke timings can be combined into a single RMW event,
leading to a larger observed time difference on the attacker
end. In a real world attack, the inter-keystroke timings of a
user are typically independent from the previous keystroke
timings, leading to only one miss predicted keystroke. In
some cases, the event splitting can also be corrected when
considering the probability of a given timing difference.

We also evaluate the impact of three different levels of
background noise (see Table 4). Under low-noise, the error
rate is 28.66%. However, under higher noise levels, the side
channel degrades to 100% error under high-noise. This is in
line with prior work on keystroke side-channel mitigation [84],

Table 4: Error rates of the keystroke side-channel.

Noise Error (%) σ Noise Error (%) σ

No 1.04 0.26 % Med 88.95 2.72 %
Low 28.66 16.54 % High 100.00 0.00 %
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Figure 17: Remote covert channel.

i.e., a low-frequency event like a keystroke is easily buried in
a large amount of noise.
Comparison with existing keystroke attacks. Inter-
keystroke timing have become a popular showcase for
software-based side-channel attacks. Some operating sys-
tem interfaces allow observing or inferring keystroke tim-
ings [21,111]. Side-channel attacks exploited CPU usage [53],
CPU caches [33, 34] with Flush+Reload, CPU caches with
Prime+Probe on L1 [80] and on L3 [84]. Crucial to all these
attacks is a highly precise measurement of the keystroke times-
tamp. We note that our attack is on par with the state-of-the-
art, enabling the same end-to-end attacks. However, these
previous attacks have been local attacks, whereas ours works
in a remote scenario. Two previous works also explored the
remote keystroke-timing scenario [59, 91]. Song et al. [91]
mounted a timing attack on packets sent over an SSH connec-
tion. While they also attack keyboard input of a remote user,
they only provide quantitative data for the end-to-end pass-
word recovery but not for the channel itself. Kurth et al. [59]
mounted a remote keystroke-timing attack, on DDIO via
RDMA. While the experimental setup is slightly different,
they also try to recover millisecond-accurate inter-keystroke
timings of a remote user. In a scenario without noise, they
achieve an F-Score 0.66. For comparison, our attack achieves
an F-Score of 0.99 in the no-noise scenario.

Each inter-keystroke timing is statistically independent and
our evaluation focuses on the mean timing difference of the
inter-keystroke timings compared to the ground truth. To
infer written language or guess passwords more advanced
techniques such as machine learning can be applied [25, 69,
73, 90, 91, 111].

6 Remote Covert Channel

In this section, we introduce the third case study on a remote
wear-leveling-based covert channel.

6.1 Attack Model
We assume the same scenario as in Figure 17, where the
sender and the receiver are located on different servers but
have access to another KV-store server through the network
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Figure 18: Histogram of the remote request RTT (n = 100).

(one-hop via a switch as listed in Table 1); the sender and
the receiver do not have a direct method of communication.
In the KV-store, they have access to common keys but do
not send any direct messages via the KV-store. An example
of such a shared KV-store can be an online document that
different users can update.

6.2 Attack Design
To communicate with the client, our server implementation
uses the IPv4 protocol with TCP sockets (SOCK_STREAM,AF_-
INET). As the number of writes to trigger a wear-leveling
is stable (Section 3.5), our idea is to have the sender help
trigger a wear-leveling event when sending a bit value of 1.
The sender continuously sends update requests to the KV-
store server when sending a bit value of 1, and stays idle
when sending a bit value of 0 (step 1 ). Correspondingly, the
receiver also sends repeated update requests to the server, and
count the number of update requests to trigger a wear-leveling
event (step 2 ). When the sender is transmitting a bit value 1,
the receiver needs fewer requests to observe the wear-leveling
latency as compared to a bit value 0.
Challenges. However, two major challenges can degrade
the channel. (1) Requests sent through the network are not
as intensive as the local reverse-engineering. If the time gap
between two requests is large, the receiver cannot easily dis-
tinguish the wear-leveling latency as part of the wear-leveling
latency has overlapped with this time gap. (2) To trigger wear-
leveling, the writes need to update an entire, aligned 256 B
block (Section 3.5). However, KV-store’s allocator does not
guarantee 256 B alignment.
Solutions. We take two approaches to overcome these practi-
cal challenges. First, instead of one thread, the sender issues
four threads to send update requests to mitigate the time gap
that may overlap with the wear-leveling latency. Second, the
sender updates a 512 B block in the request (as value). This
way, the update at least covers one 256 B block.

6.3 Attack Setup
The hardware platform follows the configuration in Table 1
(the CPU has prefetchers enabled). On the software side, the
server runs Intel’s pmemkv, a key-value store optimized for
Optane [48]. The pmemkv interface takes both PUT and GET
requests. Notably, for a PUT request, if the key already exists
and the size of value remains the same, pmemkv updates the

Table 5: Remote covert channel under different levels of
background noise (n = 100).

Noise BW (bit/s) Acc (%) #Pkt/bit σBW σAcc σ#Pkt/bit

No 10.01 98.87 2794.83 0.29% 1.05% 1.14%
Low 10.01 90.00 2789.54 0.29% 3.38% 1.03%
Med 10.00 88.57 2790.91 0.19% 3.14% 1.01%
High 10.01 88.40 2781.18 0.30% 3.02% 1.16%

Table 6: Comparison with existing remote covert channels
(local network, without background noise).

Methods Bandwidth Error Rate

DDIO [59] 16 kbit/s 0.2 %
This work (with wear-leveling) 10.01 bit/s 1.13 %
NetSpectre [87] 1.07 bit/s <0.1 %
Memory Deduplication [88] 0.08 bit/s 0.6 %
FS Deduplication [7] 0.05 bit/s 2.5 %

value directly in place; otherwise, it creates a new key-value
entry. During an update, pmemkv reads the existing value
and makes a backup to maintain data recoverability. This
procedure helps accelerate wear-leveling, according to our
reverse-engineering in Section 3.5.2. Similar to the keystroke
attack, we also consider scenarios that are noise-free and
those with co-located activities (methodology in Section 5.3).
In this experiment, the sender transmits a 100-bit message to
the receiver. And, we repeat this experiment 100 times.

6.4 Results

Bandwidth and accuracy. Figure 18 compares the round-
trip time (RTT) between normal requests and requests that
trigger wear-leveling. On average, normal requests take
72.99 µs (σ = 1.93%) and those with wear-leveling take
113.54 µs (σ = 5.21%). Therefore, even with one event of
wear-leveling, the request timings are already distinguish-
able. Table 5 presents our results under different background
noise levels, as well as a basic scenario that does not have
a co-located pmemkv running in the background. Among
the four scenarios, the bandwidth values are close (around
10 bit/s) and the accuracy values remain good even with high
background noise. As the wear-leveling event has a latency
of 49.6 µs, significant compared to the tens-of-µs network la-
tency, it is not surprising that this channel is robust and stable.
Further, as each update request (one packet per request) con-
tains both write and read (Section 6.3), the number of packets
needed to trigger a wear-leveling event (i.e., one bit in the
message) is lower than pure writes (around 2800), which is
consistent with our observation in Section 3.5.2.
Comparison with existing remote covert channels. Ta-
ble 6 compares our work with several prior works on remote
covert channels. Our work achieves a higher bandwidth than
NetSpectre [87] and recent remote covert channels, based
on memory deduplication [88], and file-system deduplica-
tion [7], respectively. Compared to the DDIO covert channel
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on RDMA-capable network interface [59], our bandwidth is
lower. However, as we show in the next section, compared
to their work we achieve significantly higher accuracy in the
side-channel scenario both works evaluate. Furthermore, as
the timing difference is strong, there is no additional amplifi-
cation of the signal required [76, 92, 96, 98]. There have also
been other remote timing attacks, however, they did not report
the capacity of their covert channel [2, 4, 54, 83, 95, 114].

7 Remote Note Board Attack

In this section, we describe another case study of a remote
covert channel based on wear-leveling. As Optane remains
data over time and across power cycles, it is likely that the
wear-leveling metadata (e.g., counters) is also persistent.
Thus, we evaluate whether the sender can leave a message on
Optane and let the receiver read from it later or after reboot.

7.1 Attack Model
Figure 19 presents the attack model, where we assume a
system setup similar to the attack model in Section 6.1, where
the sender and the receiver are located on different servers and
connected to a common KV-store server via the network. We
consider a web-API, where both the sender and the receiver
can update certain values (i.e., common keys in the KV-store)
but cannot read the full message. One example can be a
survey with each field stored in an Optane-backed KV-store,
where users can repeatedly update via resubmission. However,
unlike the real-time covert channel, the sender in this scenario
first leaves the message and the receiver reads the message
later to stay more stealthy during transmission.

7.2 Attack Design
The attack takes in the following procedure. Initially, the
sender issues repeated updates to the pmemkv KV-store server
(step 1 ). By controlling the number of updates to the same
key, the sender can set the wear-leveling counter to a certain
level (step 2 ). Moreover, the sender repeats this procedure for
different keys to encode the whole message. Then, the sender
goes offline, and the receiver attempts to recover the message
after some waiting time (step 3 ). The receiver obtains the
message by probing different keys (step 4 ) and counting the
number of updates needed to trigger a wear-leveling event

Table 7: Note Board attack accuracy under different noise
types and time gaps (n = 10).

Wait Time Noise Acc (%) σAcc Noise Acc (%) σAcc

1 min
No

92.40 2.56 %
Med

90.90 6.50 %
1 hour 92.30 3.61 % 90.90 3.82 %
1 day 92.77 3.35 % 90.10 2.48 %

1 min
Low

92.70 2.74 %
High

89.70 3.02 %
1 hour 92.00 4.00 % 89.30 3.88 %
1 day 91.70 3.17 % 89.60 3.72 %

1 min High
(100 %
Update)

89.40 4.25 %
1 hour 86.70 3.26 %
1 day 82.90 7.38 %

— Reboot 91.20 3.46 %

(step 5 ). A small number of update requests indicate the
sender has left a bit value of 1 by issuing a large number of
initial update requests (otherwise, the bit is 0). As the sender
leaves a message on Optane and the receiver retrieves it after
some time, we call it the Note Board attack.
Challenges. First, the Note Board attack also faces the same
challenges as our remote covert channel (Section 6), regarding
the request intensity and update granularity. We handle them
in the same way as Section 6.2. However, the Note Board
attack transmits the message through a range of locations, not
a single block. Thus, a new challenge is that a wear-leveling
remapping may reset other adjacent ones, as the remote sender
has no control over memory allocation on the server.
Solutions. To overcome the new challenge, the sender allo-
cates a large value of 4 kB. During the update, the sender sets
a 512 B value within the 4 kB block. This way, the distance
between two updates is at least 4 kB, reducing the chance of
remapping interference. However, the persistent memory al-
locator contains metadata and may pad allocated blocks—the
actual size of a value can exceed 4 kB and still cause interfer-
ence. Therefore, the sender further uses multiple key-values
to encode one bit in the message as redundancy.

7.3 Attack Setup

We use the same system as Section 6.3, with the KV-store
server (based on Intel’s pmemkv [48]) running on a prefetcher-
enabled CPU. We also evaluate the channel with no, low,
medium, and high noise levels (methodology in Section 5.3).
For each noise level, we test three time gaps: 1 minute, 1 hour,
and 1 day. In addition, we include a reboot scenario to evalu-
ate this attack across power cycles. Due to the long waiting
time, we evaluate 10 tests per setting, where the sender trans-
mits a 100 bit message to the receiver. To store this “Note
Board”, the sender’s keys take 4 MB out of the total 256 MB
of the pmemkv storage on Optane. We pre-allocate files for all
iterations of the attack to prevent interference from prior runs
through the wear-leveling counters, as the Optane locations
used by one iteration may be allocated to the next one.



7.4 Results
Table 7 presents our accuracy results. In noise-free scenarios,
the message can be retrieved from the Note Board at a high
accuracy of more than 92 %, even after 1 day of wait time.
Although the background noise (i.e., other KV-store activities)
has a strong interference in the keystroke attack (Section 5),
this wear-leveling-based method does not degrade much due
to the noise. Even under a high noise level, the accuracy can
still be as good as 89 %, and is insensitive against waiting time.
There are two main reasons: (1) the wear-leveling latency is
two orders of magnitude higher than normal access latencies,
which is hard to be interfered with during retrieval, and (2) it
takes a large number of updates (> 10 000, Section 3.5) under
normal write patterns—normal background activities rarely
cause remap of Optane pages within the Note Board region
even after 1 day. We further increase the write intensity of the
background activity, from 20 % update requests (Section 5.3)
to 100 %. Although the accuracy gets noticeably lower, e.g.,
82.90 % after 1 day of wait time, it is still usable. Moreover,
the Note Board remains accurate after reboot (91.20 % ac-
curacy), which confirms that the wear-leveling metadata is
persistent. We conclude that the Note Board attack is robust
against normal interference, making it hard to defend against.
We propose a defense mechanism in Section 8.2.
Comparison with existing attacks. While there have been
many remote covert channels already, as we have discussed
in Section 6.4, they differ from our Note Board attack as they
are usually not persistent and asynchronous. Instead, they are
temporal, and require the sender and the receiver to collude
and transmit data synchronously.

8 Discussion

In this section, we discuss future works and our proposal for
defense mechanisms.

8.1 Future Work
Other Optane-based side-channel attacks. In this work,
we have provided the basic attack primitives and presented
four case studies. As Optane becomes more widely used, we
expect more use cases. For example, Optane can serve as the
storage backend for general applications [29, 62] and a large
memory for scientific computing [20, 28]. We expect future
research to explore other types of side-channel attacks, such
as workload detection, based on our attack primitives.
Attack on different Optane configurations. In this work,
we study one Optane DIMM installed alongside the DRAM.
Optane also allows multiple DIMMs to be interleaved and
work as a single, large device [42], similar to RAID-0 of hard
drives. As writes are divided among different DIMMs, we
expect different internal caching behaviors. Besides the per-
sistent use cases, Optane memory can also serve as a large
volatile memory (i.e., Optane’s Memory Mode [42]). We ex-
pect future research to study these alternative configurations.

8.2 Defense Mechanisms
Mitigation of side channels from internal buffers. The
internal buffers, RMW and AIT, are structures that can lead
to side channels. Similar to the defense mechanism for CPU
cache side channels, it is possible to divide these buffers
for each application/user and provide isolation [19, 67, 77,
101]. Likewise, better replacement policies and hashing
schemes [11, 22, 58, 108] may also mitigate the side chan-
nels of buffers in the Optane memory.
Attack primitive detection. Similar to attacks on CPU
caches, attacks on Optane memory also follow certain pat-
terns, such as Prime+Probe. Therefore, prior solutions for
detecting cache attacks can also be useful for Optane mem-
ory [17, 74, 81, 112]. Upon detection of repeated access pat-
terns, the hardware can throttle the accesses speed to Optane
or change the replacement policy of internal buffers (e.g.,
force buffer flush), in order to break the side channel. How-
ever, the wear-leveling channel, which can be exploited using
normal key-value updates, is hard to detect. Next, we describe
a proposal for mitigating the wear-leveling channel.
Wear-leveling timing mitigation. Wear-leveling causes a sig-
nificant access delay, likely because accesses cannot continue
when an Optane-internal page is being remapped. There-
fore, one mitigation is to eliminate the stop-the-world wear-
leveling. Instead, we propose an adaptive wear-leveling mech-
anism. First, the device can perform wear-leveling early when
the page is not being accessed but thresholds are about to be
reached, effectively working as a “garbage collector” in the
background. Second, as Optane and other persistent memory
technologies [60, 61] have a high write endurance level (e.g.,
107 per cell [99]), wear-leveling is not extremely urgent. Thus,
it can be postponed when there are continuous writes to the
same page. When the series of writes complete, wear-leveling
can happen in the background without degrading performance
or leaking sensitive information. Note that, by keeping track
of the wear-leveling counters, the Optane controller can still
balance the write endurance of different memory pages. For
example, pages with more accumulative writes will have a
lower wear-leveling threshold. This way, it will be substan-
tially harder for the attacker to leave a message on Optane
using the wear-leveling counters.

9 Conclusion

We presented the first side-channel security analysis of In-
tel Optane persistent memory, showing that it introduces
new side channels. Our analysis is based on the reverse-
engineering of the internal cache hierarchy, sizes, associativ-
ity, replacement policies, and wear-leveling mechanism of
Optane. We demonstrate a local covert channel, a keystroke
side-channel, and both a synchronous and an asynchronous
remote covert channel. This work shows that it is necessary
to introduce countermeasures against our attacks in future
persistent memory systems.
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